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CHAPTER I
INTRODUCTION

As the exploration of space progresses from the near earth
environment to the moon and the planets of the solar system, study
of the atmospheric entry of objects in excess of escape velocity
(about 11 km/sec) becomes necessary. In addition to stuides con-
cerning manmade objects, there is considerable interest in the entry
of meteoroids into the earth's atmosphere at velocities from 20 to
70 km/sec. At these large speeds radiant energy transfer is an
important factor governing the behavior of the hot shock layer gas
enveloping the object.

Consequently, a number of investigators have addressed them-
selves to the problem of the radiating shock layer. The first
analyses assumed that the flow processes were uneffected by (or.
uncoupled from) the transfer of energy by radiation (see for example
refs. 1 and 2). Thermodynamic and flow properties were calculated
neglecting radiation. The radiant energy flux was then calculated
from measured or theoretically determined optical properties for
these conditions. While this approach provides acceptable engineering
estimates at speeds less than escape velocity, it is not sufficient to
describe the effects of radiation at higher speeds. The next step wvas
to take into account the loss of energy from the shock layer due to
radiation. This cooling of the shock layer tends to reduce the
emergent radiant energy flux. This reduction is often termed

1



"radiation decay." Radiation decay was studied by a number of authors
(see, for example, refs. 3-3). All of the cited works, with the
exception of reference O, used the transparent approximation*, which
neglects absorption within the shock layer, and assumed that the
radiation cooling of the shock layer gas was small and did not influ-
ence the mass transport. The process of absorption by a gray** gas
was studied in reference 3. However, the flow model used in that
investigation only roughly approximates the flow in the stagnation
region of a shock layer. Consequently, the analysis was unable to
describe details of conditions in the shock layer or to provide reli-
able quantitative results.

Perhaps the most embitious analysis to appear to date is the
work of Howe and Viegas (ref. 9). They obtained numerical solutions
to the integrodifferential system of equations governing the flow in
the stagnation region including the effects of radiation decay,
absorption by a gray ges, viscosity, and surface mass injection. An
indication of the complexity of this numerical approach is the reported
computation time for a single example of 5 hours on the IBM 7090

electronic digital computer.

*So called because the shock layer gas is considered to be
transparent to its own radiation.

**p gray gas is one for which the opticel properties are
independent of the photonenergy or wavelength.



All of the works discussed sbove are restricted to velocities
less than about 20 km/sec, although the work of Howe and Viegas was
s0 restricted simply because they did not choose to make calculations
for higher velocities. Fay, Moffatt, and Probstein (ref. 10) under-
took an analysis of meteoroid entry, in the speed range of 20 to
70 km/sec. Since they were interested only in obtaining upper bound
estimates of radiant heating, they ignored radiation decay and absorp-
tion (except that they did not allow the radiant energy flux to
exceed the black-body limit) both of which can be quite important
at these speeds.

While the existing studies (which include many works in addition
to those cited) have contributed much to the qualitative and quanti-
tative understanding of the physical processes taking place in
radiating shock layers, a great smount of work remains. For example,
parametric studies of absorption in a realistic shock layer flow are
lacking, the effects of surface reflectivity have been generally
ignored, and there have been no reported attempts (at least in the
knowledge of this investigator) to study shock layer gases with non-
gray optical properties.¥

The investigation reported herein was undertaken to provide a
parametric study of the influence of radiation on blunt objects

large and small, travelling at speeds up to 70 km/sec. The approach

*Lick (ref. 11) and Greif (ref. 12) considered nongray optical
properties in their studies of combined radiation and conduction.
Their results indicated that nongray effects can be significant.



has been to seek simple approximate solutions where available in the
hope that they would lead to a better understanding of the physical
processes involved. The parameters to be stnidied include the radia-
tion cooling parameter e, which characterizes the relative importance
of radiation as an energy transport mechanism compared to convection,
the Bouguer number, which indicates the importance of sbsorption in
radiant transport, the surface reflectivity, indicative of the ability
of the surface of the object to accept the incident radiant energy
flux, and the spectral variation of the absorption coefficient. (There
is no single quantity or even group of quantities which characterizes
the important effect of spectral variation on the flow.) Definitions
of these parameters and their role in influencing the flow will be
discussed in greater detail in subsequent chapters.

In order to facilitate this investigation without sacrificing
physical significance, analysis is limited to the stagnation region
and the following conditions are assumed to apply: (1) the shock
layer gas is in local thermodynamic and chemical equilibrium, (2) the
body geometry is axisymmetric, (3) there is no mass addition to the
flow from the body surface, (4) the thicknesses of the shock and the
viscous boundary layer are small in comparison to the shock standoff
distance, and (5) absorption in the free stream shead of the object
is negligible.

In this investigation, solutions will be obtained for four
limiting cases of the radiation cooling parameter and the Bouguer

number. The first of these, which is presented in chapter III, is



a small perturbation expansion in the radiation cooling parameter e
valid when the influence of radiation is small. The second solution,
presented in chapter IV, holds when the shock layer is optically thin.
This solution is presented as a small perturbation expansion in the
Bouguer number. A solution valid when the shock layer is optically
thick (Bouguer number >> 1) and the final solution, which is
restricted to the case when radiation is the principal mode of energy
transport within the shock layer, are presented in chapters V and VI,
respectively. The first and second solutions have been formulated to
include the effects of nongray rediation. The third and fourth
solutions are restricted to the gray case. In each of the four
limiting cases, it is possible to approximate the governing integro-
differential system of equations by a purely differential system
vhich leads to a singular perturbation problem.

The results obtained by means of the various approximaticns are
combined in chapter VII to give the radiant heat transfer rate and
an estimate of the effect of radiation on the convective heating rate
at the stagnation points of blunt objects traversing a gray model
earth atmosphere. The effects of the nongray character of alr on

these results is discussed.



CHAPTER II. STAGNATION MODEL FOR
A RADIATING SHOCK LAYER

A. Fundamental Equations of Radiation

Prior to setting up & particular flow model for the problem at
hand, it i1s desirable to examine briefly the fundamental equations
of radiation gas dynamics. An excellent discussion of these equations
has been presented by Goulard in the volume "High Temperature Aspects
of Hypersonic Flow" (ref. 13), and the reader is referred to this
work for a more detailed exposition.

In the first chapter, it was indicated that the studies of this
paper are limited to the steady flow of gases in local thermodynamic
and chemical equilibrium. In addition, the effects of radiation
pressure and radlation energy density are ignored. These effects
are important only when the radiant energy flux is extremely large
as it is deep in the interior of a stellar atmosphere. Finally, the
presence of external forces, such as gravity and electromagnetic
forces, are neglected. With these restrictions in mind, the conser=-

vation equations for a radisting ges can be written

(%u;),i =0 (Continuity) (e.1)”

*The double subscript notation is employed.



T
pug uy o = p,i 83,3 (Momentum) (2.2)
ou, h = ={u, T -af . - qR (Energy) (2.3)
i7t,1 J 13)7%; 1,1 i,i
vhere the quantity ht is the total specific enthalpy of the gas
1
h, =h+=Zu, u (2.4)

t 2 171

The static specific enthalpy h includes the chemical energy of the
ges in terms of the heats of formation of the various gaseous species.
An expression relating the thermodynamic variables is needed to

complete the set of equations. A convenient form is

h = h(p,p) (2.5)

The molecular transfer processes are represented by the classical

expressions

;9 613 uk,k (2.6)

WD

— ' -
T3y = “(“1,5 * uj,i) * (“

qg = Koo Ty (2.7)

The quantity keff is an effective coefficient of heat conduction
which includes the effects of energy transport by molecular collisions
and by the diffusion of reacting species. These two processes can be
lumped together like this only when the conditions of local thermo-

dynamic and chemical equilibrium hold (see ref. 1k).



The radiant energy flux vector qiR is defined in terms of the

radiation intensity JA'

©0
R R
qsfqd)\,qstld(D (2.8)
i o Al A bt A i

and 1s the rate of flow of radiant energy per unit area across an
element of area whose normal points in the ith direction. The
quantity li is the direction cosine between the direction of a
single beam of intensity JR and the ith direction. J, can be

A
determined from the conservation equation of radiation transfer

W I\

as = -pﬁ.)\ J}\ - B‘): (2'9)
where BK is the mass extinction coefficlent. It is composed of

the mass absorption coefficient KA and the mass scattering

coefficient UA

= + .
By = & * Oy (2.10)
The ratio of mass emission coefficient jx to the mass extinction

coefficient BX is often called the source function S%‘= j%/ﬁk'

For nonscattering media in & state of local thermodynamic
equilibrium (;:7\ = O) » the source function reduces to the Planck

function



> -1
B. - 2he_ (eh°/N‘T - 1) (2.11)
NS

provided that the mass absorption coefficient « includes the

A
effects of induced emission. Here h and k are the Planck and
Boltzmann constants, respectively, and c¢ 1is the speed of light.
Throughout the remainder of this paper, it is assumed that the gas

in the shock layer is nonscattering. This assumption is reasonable

as the number of large solid particles which might scatter radiation
is expected to be negligible in the shock layer. A few such particles
might exist in the cooler regions of the boundary layer adjacent to

the body surface as a result of "spalling" of this surface. However
P

4]

their presence could be accounted for, if necessary, by changing the
effective reflectivity of the body surface.

At the extremely high shock layer temperatures for which the
ges is multiply ionized and free electrons are plentifully, Thomson
scattering can become important. For example, Kivel and Mayer
(ref. 15) show that scattering cannot be neglected when the tempera-
ture reaches 350,000O K at densities less than about 0.0l of the sea
level value.

For the nonscattering case the intensity of radiation at a
point M in the direction ® follows from a formal integration

of equation (2.9)
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P=Q
(2.12)
+ J(s) (Q)exp (-7
A 2 (-T10)
where
M
™M T P pry ds

ic the "antd
1S Ti4Oc CcpLl

betveen the points M and P. P is a "running” point on the beam

between point M and the boundary point Q.

*Although the terms "optical thickness" and "optical path length,"
long established in astrophysical literature, seem to imply a dimension

of length the quantity 7 is dimensionless and is indicative of

A,MP
the number of photon mean free path lengths in the physical distance
betwveen M and P.
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The quantity Jgf) (Q) represents the contribution to the
intensity at point M from the boundary and, in general, includes
emission from the surface, reflection from the boundary of radiation
originating from within the region, and transmission through the
boundary of radistion originating from without the region.

The integral term represents the summation of the contributions
from all points P along the beam reduced by the attenuating factor

exp(-Tx MP) which acounts for absorption by the intervening matter.
b

The divergence of the radiation flux vector can be found with

the aid of solution (2.12) with the result

© n exp(;T(s)
Q 5 - 4(oxp) or - A (pr:)\)M jv (% B)p \E;"MP) av(P)an

(2.13)
© exp(—-'r )
- (pn)\)M f 3, () —-:;‘i‘—Q— cos 8 ds(Q)dr
Jo A MQ
The integrations over the volume V of the gas and the area A of

the bounding surface include only those portions of the volume and

surface vhich are visible to an observer stationed at point M.

B. Stagnation Flow Model
The study of three-dimensional flow of compressible gas in the
vicinity of the forward face of a blunt body cannot be reduced via
transformation to the study of an eyuivalent one-dimensional system

as can be done in the incompressible case. However, available



numerical solutions (see for example refs. 15-18) indicate that for
all practical purposes a reduction from a three-dimensional to a
nearly e;uivalent one-dimensional problem can be carried out in the
stagnation region. The reason that this simplification can be
applied is that the flow behind a strong bow shock is nearly incom-
pressible in the stagnation region. Also the various thermodynamic
properties are nearly independent of the lateral or radial coordinat
While the same arguments apply in the stagnation region of a
radiating shock layer, it is not possible to postulate the existance
(even approximately) of a one-dimensionsl solution solely on this
basis. Some additional assumption is re,uired regarding the effect
of the far-field on the radiant heat flux and its divergence. This
effect, of course, cannot be obtained a priori as it depends on the
solution to the entire flow field. Fortunately, the shock layer is
thin and only a small portion of the radiant energy emitted by gas
removed from the stagnation region actually pesses through the
stagnation region. If absorption is small, only a small portion of
this is absorbed in the stagnation region. If, on the other hand,
absorption is large, the beam is greatly attenuated when it reaches
the stagnation region leaving only a small portion of the energy
which started the journey to be absorbed in the stagnation region.
The divergence of the radiant flux is influenced only by the amount
of energy absorbed and emitted. Consequently, the far-field effect

on the divergence of the radiant flux is a result of that small

12

€.
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portion of radiant energy originating in the far-field and absorbed
in the stagnation region. 1In the transparent and optically thick
limits, this effect of the far field vanishes.

It would appear from the above discussion that a stagnation
model for a radiating gas can be postulated as long as the assumptions
concerning the far-field are not grossly unrealistic. In what follows,
a particular stagnation model will be formulated and an estimate of
the inaccuracy resulting from the assumption concerning the far field

will be obtained.

A schematic of the flow in the stagnation region of a blunt

body is shown below
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At very high speeds, the ratio of the shock standoff distence A to
the shock radius Rs is very much smaller than one (a typical value
is 0.05). Under these conditions, the geometry of the stagnation
region closely resembles a plane parallel gas slab. In addition,
the enthalpy in the shock layer varies slowly with respect to r/A
so that the stagnation region may be approximately represented by

a gas slab in which the thermodynamics as well as the geometry is
one-dimensional.

As a result of the above considerations, the model described
below has been chosen to represent the flow of a radiating gas in
the stagnation region of a blunt object. The model consists of an
axially symmetric flow impinging upon an infinite flat plate normal
to the stream direction. At a plane which is parallel to the plate
and a distance A in front of it, the gas is suddenly raised to a
total specific enthalpy of % wi. The plate is held at a constant
temperature TW. A sketch illustrating the geometry of the flow

model is shown below.

U

4 Axis of
symmetry
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The general equations of motion (egqs. (2.1) and (2.3)) when
specialized to the asisymmetric geometry become
-§-(pur) + a—(pwr) =0 (2.14)
or oz
oT oT T -7
pu§’3+ QW§—u= _gp_+ I, 2, xr 9 (2.15)
or Oz or Oor dz r
or oT T
ow dw op ZZ TZ Tz
Us—+ oW o = = == + + + 2.16
T Y P (2.26)
oh dh E)qr qr E‘)qz S r
pu > + ow Sz "3 "% "3z + 5;'(u7rr + WTrZ)
(2.17)

vhere Q. and q, are the r- and z-components, respectively, of
the heat flux vector which includes, conduction, diffusion of reacting

species, and radiation. The stress components are given by the

expressions
Tee=2“%+(“"§*9@%+g§+%) (2.20)

.. (a_ . a_) (2.21)



16

The equation of state is

h = h(p,p) (2.22)

In order to completely specify the problem, a consistent set
of boundary conditions must be provided. The kinematical conditions

on the velocity are

w(r,0) =0 (2.23)

o

p(r,A)w(r,8) = ~p_ W (2.24)

The first of these conditions restricts the analysis to one
for which there is no injection from the surface of the object. When
gas injection is important, it is necessary to replace the zero on
the right-hand side of equation (2.23) with w_, the normal velocity
of the gas at the wall. The second condition was obtained from
continuity across thernormal shock at the stagnation point. A third
kinematical condition is introduced here in order to relate the
standoff distance A to the variation of the tangential velocity
along the surface gz = A. This variation in velocity is taken to be
equal to that behind the near normal portion of a spherical shock,

that is

u(r,A) = W_cos B~ W = (2.25)

Rs

vhere f 1is the local inclination of the shock from the free

stream direction and RS is the radius of the spherical shock.
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The dynamical "no-slip" condition at the surface is
u(r,0) = 0 (2.26)
The conditions on the enthalpy and pressure are
b, (r0) = 3 W (2.27)
hy (r,0) = h (2.28)

2
p(rs8) = 5, W (1 - X) [1 - (] J (2.29)

8
where X = g»/ p(0,4) is the density ratio across the normal shock.
Condition (2.27) comes from the conservation of energy across a strong
normal shock and does not take into account absorption in the free
stream of radiant energy emitted by the shock layer. Condition (2.28)
restricts the analysis to those conditions at which a temperature
"Jump"” or discontinuity is not present at the body surface. Such a
"Jump" can occur only when the molecular mean free path in the gas
is not negligible in comparison to the characteristic length of the
domain (in this case, the thickness of the thermal boundary layer).
Condition (2.29) is the pressure distribution behind the near normal
portion of a spherical shock of radius R.

In addition to the boundary conditions listed above, boundary
conditions on the radiant energy flux must be specified. These

conditions are:
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(1) The boundary at 2z = A (which corresponds to a bow
shock) is transparent.

(2) There is no radiant energy transfer from the free streem
to the shock layer.

(3) The boundary at z = O (which corresponds to the body
surface) is cold and reflects diffusely and independently of wave=

length a fraction r, of the incident radiation.

The statement (contained in condition (3)) that the body surface
is cold means that emission from the body surface has a negligible
influence on the gas in the shock layer. Whern the hot (temperatures
in excess of 10,000° K) shock layer is optically thin emission from
the relatively cool (temperatures less than 4,000° K) body surface
may be comparable to emission from the shock layer gas. However,
because the shock layer is optically thin very little of the radiant
energy emitted at the body surface will be absorbed by the shock
layer gas. On the other hand, when absorption in the shock layer
is important the shock layer gas emission will approach the black-
body value corresponding to the high shock layer temperature. Since
black=-body radiation is proportional to the fourth power of temperature
the gas emission from an optically thick layer will greatly exceed
the emission from the body surface. Thus whenever the body surface
temperatures are small compared to the shock layer gas temperatures
the influence of emission from the body surface on the shock layer gas

is unimportant.



19

Prior to assuming that the shock layer is one-dimensional it
is necessary to specify whether the body surface reflects diffusely,
specularly, or in some combination of the two. However, in a one-
dimensional system this specification is superfluous because the
difference in effect of the two types of reflectivity vanishes.
Since the surface reflectivity of most solid materials at high
temperatures varies little with the wavelength, the assumption that
the surface reflectivity is independent of wavelength provides s
simplification in the analysis without sacrificing physical
significance.

It can be seen from the definition of the total enthalpy

l1( 2 2
ht=h+-2-(u +W)

and the boundary conditions (2.24) and (2.27) that the magnitude of
the xinetic energy in the shock layer is order X2 compared with
the static specific enthalpy. For a strong shock, which is the only
case of interest here, 0.05 is a typical value for X, the density
ratio across the shock. As a consequence of the above the kinetic
energy terms will be neglected in the subsequent analysis. The
viscous dissipation terms (the last three terms on the right-hand
side of equation (2.17)) will also be neglected because only kinetic
energy is dissipated through the action of the viscous forces.

It is desired that the solutions to the one-dimensional model

represent, as closely as possible, the phenomena in the stagnation
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region of a blunt body. For simplicity, the blunt body geometry,
flow field, and thermodynamic properties are considered to be
axially symmetric about the stagnation streamline. Expanding the
solutions for the real blunt body problem in terms of the radisl
coordinate r and arguing on physical grounds that w(r,z), p(r,z),
p(r,z), and h(r,z) are even functions of r while u(r,z) is

odd, gives

W = w(o) (z) + O(rg)

p = 2% (2) + 0(=2) (2.30)

n =0l (2) + o(x?)
In addition, the heat flux components will have the form

q, = q,io) (z) + 0(x°)

(2.31)
o, = ratM) (2) + o(x?)

Neglecting terms of order r2 and higher restricts the solutions
to the vicinity of the stagnation point. Since stagnation region
solutions are desired, it will be assumed that the solutions in the
plane parallel model have the functional forms of equations (2.30)

and (2.31) truncated efter the linear term in r. For these assumed
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forms, the continuity equation (2.1L) requires

rg'(z)

]

pou

(2.22)

oW

-2g(z)

That portion of the heat flux due to conduction end diffusion

of reaction species is proportional to the enthalpy gradient, that is

q, az’ T dr

From conservation of energy across the near normel portion of a strong

-2

spherical shock

h ~

V] o

Thus
c 1 ) c 1 A
AR LV RS L - (ﬁ:)g/A
Comparing terms that appear in the energy equation one finds that

S c c Bq c 2
() )<

S

Thus, the terms containing qrc can be neglected in the formulation
of the stagnation flow model.

If the shock layer is optically thick, that is the photon mean
free path 1is véry small compared to the shock standoff distance, the

raediation flux terms take on the same form as the conduction
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terms” and qu%/ar + qrﬁ/r may be neglected. On the other hand,
if the gas is not optically thick, this simple order of magnitude
analysis no longer suffices because the divergence of the radiant
energy flux depends not only on local conditions, but on conditions
throughout all of the shock heated gas which can be seen by an
observer located at the point in question.

Calculations were made of the divergence of the radiant flux
for a gray isothermal gas in a shock layer formed by two concentric
spherical surfaces with a standoff distance to shock radius ratio
of 0.05. A sketch showing the volume of gas which contributes to

the radiant flux at a point on the stagnation streamline is shown

below.

Contributing volume for
concentric sphere modcl

*
According to the Rosseland or diffusion approximation.
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The largest difference between this result and the divergence
of the radiant flux for a plane-parallel layer occurred adjacent to
the wall for an optical thickness of about 0.13. The difference
amounted to 2.2 percent of the value for the plane-parallel layer.

A second set of calculations was made to determine the effect
of a nonuniform enthalpy distribution, in the lateral direction,
on the magnitude of the divergence of the radiant flux. The enthalpy

distribution was given by

‘ " 174 2 (r 27

h(O)Ll - §(§> (S) _J, for r S 42R,

h(r) =% (2.35)
0, for r > WféRS

N
This expression approximately corresponds to the enthalpy distribu-

tion in the shock layer about a spherical body. The absorption
coefficient was assumed to vary as the third power of the enthalpy*
and the shock standoff distance to shock radius ratio, A/Rs, was
chosen to be 0.05. A comparison of calculations for a nlane-parallel
layer in which the enthalpy was assumed to vary according to
equation (2.33) and of calculations for a plane-parallel layer in

which the lateral enthalpy distribution was uniform (i.e., h(r) = h(0))

indicated that the largest difference in the magnitude of the

»*
This variation is consistent with the correlations of the optical

properties of air to be discussed in a subsequent section of this
chapter.
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divergence of the radiant flux occurred for a shock layer optical
thickness of about 0.1. This difference amounted to 2.3 percent of
the value for the uniform distribution. These results are inde-
pendent of the value of h(0).

Since the errors in the divergence of the radiation flux for
the one-dimensional shock layer due to the separate effects of
geometry and nonuniform lateral distribution of enthalpy are small,
their combined effect should be given approximately by the sum of
the separate effects. That is, the maximum error due to the combined
effects of geometry and nonuniform lateral distribution 1s probably
not much greater than 5 percent for A/Rs = 0.05. This, of course,
does not imply that the final results for the enthalpy (for example)
would be in error by 5 percent but only that one term in the energy
equation is in error by 5 percent. In any event, the results of the
calculations mentioned above are considered to give sufficient
Justification for choosing the plane-parallel layer as a model for
the stagnation region of a blunt body.

The expression for the radiant energy flux is more seriously
affected by the plane-parallel layer assumption thean is the divergence.
For example, Koh (ref. 19) has computed the radiant flux at the wall
for an lsothermal shock layer formed by two concentric spheres. TFor
a shock standoff distance to body nose radius ratio of 0.05 and a
vanishingly small value of optical thickness the result is about

17 percent less thean for a plane-parallel isothermal layer of equal



25

optical thickness. This difference decreases with increasing optical
thickness. Koh also computed the effect of nonuniform lateral en-
thalpy distribution using an assumed enthalpy distribution similar
to that given by equation (2.33). He found that the flux at the
wall for the nonuniform distribution was about 1.5 percent less than
that for an isothermal layer for a shock standoff distance to shock
radius ratio A/RS = 0.05 and a vanishingly small optical thickness.
As expected, the difference decreases as the optical thickness
increases.

It is apparent from Koh's results, that an accurate estimate
to the rate of radiant heat transfer to the stagnation point cannot
be obtained through the use of the plane-parallel layer approximation
unless some correction factor, which takes into account the actual
geometry of the shock layer, is employed. However, because this
investigation is concerned with obtaining a general understanding
of the problem of radiating shock layers rather than specific numerical
results, such a correction factor will not be used herein.

At this point, it is convenient to introduce the variable

transformation

z
N = / pdz (2.34)
o

The new variable n is often called the Dorodnitsyn variable.
Under this transformation, the normal and tangential velocity

components become
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d'z A=
w = =2f(n) e (2.%52)

u = rf'(n) (2.35v)

The two momentum equations (egs. (2.15) and (2.16))take the form

' 2
(o £7(n)) +2e(n) £%n) - [£'(n)] - 51-1: %{} (2.36)

puf"(n) - ZDEx (f‘(n) - p(n) f(n))]'
: pL(g MR f(rn] _2s(n) £1(n) (2.57)

+ =g (n)[f(n):] -+ 3 5 ep'(n)

and

An order of magnitude analysis of e.uation (2.37) indicates
that p'(n) is order X or Re-l, vhichever is larger. Since both
X and Re"l are very small compared to unity e uation (2.37) will

be replaced by the simple approximate expression
p'(n) =0 (2.38)

Thus, the pressure is a function of r only. In particular, the

strong shock relations for the near normel portion of a spherical

p(r) = p_ sz (1 -X)[ - (é—)g]+ O(rh) (2. 39)

shoclz give
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To first-order in r
1 dp o 1
ror T P (L-%) S5
s
so that equation (2.35) becores
2
20 W™ (1 -%)
Y L, 02
[Put"(n) ] + 2t(n) £(n) - (G -
cR
s - - -
(2.50)

Under the foregoing assumptions and the coordinate transformation,

the energy equation (eq. (2.17)) becomes

=2£(n) h'(n) + q'(9) = 0 (2.41)

The boundary conditions are

£(0) = 0 (2.52)

£'(0) = © (2.143)

f(qA) = %—pw A (2.h4h)
19

f'(TIA) = R—s (2.15)

h(0) = n (2.46)

h(qA) -1 ? (2.1:7)
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where
p
N J pdz (2.43)
o
The heat flux term g(n) in the energy eguation (2.h41) is
composed of a combined conduction and diffusion term
c
4 (n) = -pk'(n) = - B nr(n) (2.49)
and a radiation term
T
R() 2 ’ﬁwf'[‘?\AB t)E [t at
RPN AN
JOiJT)\ A2 (BT TS
[alLN E o )
-, B, (tk) X (T)\ - tx) at, (2.50

This radiation term is representative of the case of a plane-parallel
geometry with a transparent wall (shock) and a cold wall, which
reflects diffusely and independently of wavelength a fraction r, of
the incident radiation, separated by & nonscattering, nongray gas.
The variable ™ is called the "optical path length" and is defined

by the expression
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r 1 -
Ty = ~/o PRy dz = \/: N dn (2.51)
Expression (2.50) was specialized from the more general expression
of Goulard (ref. 1). Goulard derived the expression for the radiant
flux in a plane parallel geometry with arbitrary reflecting, absorbing,
and emitting walls separated by a nonscattering, nongray gas. His
expression was restricted to isotropically emitting and diffusely
However, this
restriction is of little consequence in this problem because emission
from the wall will be neglected (the wall is cold) and there is no
difference in effect between specular and diffuse reflection in the
one-dimensional case.
The first term in equation (2.90) represents the radient energy
flux passing through the plane 7, = const. and which originated in

A

the region between this plane and the shock at Ty = Ty This
A

radiant flux has been attenuated by partial ebsorption in the inter-

vening gas. The second term represents the radiant energy flux

passing through the plane T\ = const. and vwhich originated in the

region between this plane and the wall at Tx = 0. This flux has

also been attenuated by partial ebsorption in the intervening gas.
The last term represents the radiant flux passing through the plane

Tk = const. and which was reflected from the wall and attenuated

by the intervening absorbing gas.
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Substituting the expressions for the energy flux equations (2.49)

and (2.50) into the energy e uation (2.41) gives

2f(n) h'(n) + [%% h'(n)]' + IEn]= 0

vhere the divergence of the radiant flux is represented by the

integral term

IE]_]= -k w5 (n) B(n)

© "
+ EnJ/; K)\(n){/; *'»7\(71') B,(n") El(i'f}\(n) - 77\(“')') dn

.
+or E2(1')\(ﬂ)) L ° (1) By(n') Eg('r)\(’]'))dn' A

(2.52)

(2.53)

The finael step in the derivation is to reduce the eguation to

nondimensional form. For this purpose, the following set of non-

dimensional quantities is introduced

o L £(T), n(n) = 5 %% H(n)

-]

=

n=op 8 70, £(1) =

o ps lls 3 (E) _ - -1 -1 -

7=l |H ,pu—(ps us)gz(h), P = o ?B(h)
s

h])-20n o, T3] m) =k, BE, ) =k, B[
S S

oT 4

AN 2
BA(T]) = _;t_S__ _)\(-T_]-)’ 8'2 = 8\1 ;x)('nrA')

s

(2.54)
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[T
s p p W A
Pr - - s’ Re = — 2 A, Pe = Pr Re
s ks s us 5 s
(2.54)
hoT !
s
r= e kp = #g P, By €=k T
-] -]

The subscripts « and s indicate conditions evaluated in the
undisturbed free stream and immediately behind the shock, respec-
tively. The quentity A.A is the shock standoff distance for
the nonradiating (or adiabatic) shock layer. The property variations
represented by '3-1, ’}2, and 35 are functions of h only as
the gas is in local thermodynamic and chemical equilibrium and the
pressure has been assumed constant throughout the stagnation region.
The quantities Prs, Res, and Pes are the Prandtl, Reynolds, and
Peclet numbers, respectively, based on conditions immediately behind
the shock. The parameters T, kP, and € are the inverse of the
Boltzmann number, the Bouguer number, and the radiation cooling
parameter, respectively. These parameters are fundamental to the
study of radiation gas dynamics and have been discussed by a number
of investigators (see, for example, refs. 21 and 22).

Substituting the above listed nondimensional quantities into
equations (2.40), (2.42) through (2.47), (2.52), and (2.53) yields
the nondimensional system governing the flow in the stagnation

region of a blunt body traveling at hypersonic speeds.



32

OROREALNOE O RGN (2.59)

ok E;g(ﬁ) f"ﬁ)J' + 28(7) P(7) - [f(a‘)]g c 2B =0 (2.50)
£(0) = 0 (2.37)

T'(0) =0 (2.58)

'f'(nA) =1 (2.5%)

f:(ﬁ) - 27((6&) - —t (2.60)
4 Bs)  af2X(1 - X)
h(0) = h = %-w h (2.61)

ZEAE (2.62)

vhere ﬁA is the value of the nondimensional Dorodnitsyn varisble

at the shock. This quantity is determined from the expression

A TIA- - - 7

4T'=f n(7)dn (2.63)
o

The integral term 'I'[ﬁ'] is given by the expression.
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I[7]= %M B

+ 1 f TR { f BLE EG) B (g BCRERAC LT
(2.6k)

™

+ 2r, 3, (i T (W) fo b B B Bl HGED)ar o

In two chapters (V and VI) of this paper, it will be convenient
to express the energy e.uation in terms of the optical path length as
independent variable. In both cases the optical properties of the gas
vill be assumed to be independent of wavelength. In this event, the

energy equation (less the thermal conductivity term) becomes

T(7) BT + I[F )= 0 (2.65)

where

[}

i7])- 2 1[5 - -2B(®

«(n)

i [ 2 5(%) By (kg |7 - ¥l)at (2.66)

+2r, Eg(kP ?) h/ﬁnﬁ B(%) Eg(kP E)d%
o]
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Throughout the remainder of this baper, the bars over the non-
dimensional variables will be dropped. This should not lead to any
confusion because only the nondimensional form of the governing

equations will be employed.

C. The Divergence of the Radiant Flux
The nondimensional form of the divergence of the radiant flux

is

eI[n ]= -2exy(n) B(n)

rep [0 [ g B8 (i | 7, () = (1) Jan
(2.67)

+er EQ(RP T?\("])) _/OTIA k(') By (n') Ez("P T)\(n'))dn' dA

The first term on the right-hand-side of this expression is the local
emission term which represents the rate at which energy is emitted per
unit volume of gas at the location n. The integration over all wave-
lengths N has been performed for this term with the aid of the
definition of the Planck mean mass absorption coefficient (see below).
The second and third terms represent the rate at which radiant energy
is absorbed per unit volume at the location 1.

It is the presence of the second and third terms which so greatly
complicate the radiation problem. These terms are integral expressions.

In addition, their presence makes it impossible to define a wavelength
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averaged absorption coefficient by which the wavelength dependence
might be eliminated. The importance of these terms is indicated by
the magnitude of the Bouguer number kP vhich is the ratio of the
shock standoff distance for a nonradiating shock layer to the photon
mean free path evaluated at conditions immediately behind the shock.
The radiation cooling paremeter € is a ratio of the rate of

energy loss per unit area by radiation from both sides of a none

absorbing isothermal layer of gas of thi

ane e
gae ¢ the rat

he € a
which kinetic energy enters the shock layer per unit area of shock
surface. Alternatively, the parameter ¢ may be interpreted as the
ratio of the radiationless standoff distance to the decay length where
the decay length is the length required by an element of gas to lose
all the energy it possessed upon emerging from the normal shock if
it loses this energy by radiating (without reabsorbing) at a con-
stant rate. This parameter modifies the entire radiation term and
thus, acts as a measure of the relative efficiency of radiation
compared to convection as energy transport mechanisms within the
shock layer. " In addition, the surface reflectivity r, and the
wavelength dependence of the absorption coefficient influence the
character of the radiation terms and will be considered as parameters
in this study.

Most investigators who have studied problems in which a term

similar to I[ﬁ:] appears have assumed that the gas and its sur-

roundings are gray, that is the optical properties are independent
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of wavelength. This allows the integration over frequency to be
performed analytically. Accurate results can be achieved in the

two extreme cases »f optically thin (‘g << l) and optically thick
(t& >> l) gases, When the gas is optically thin at all wavelengths,
the gray absorption coefficient is correctly given by the Planck

mean mass absorption coefficient

- Y&
Kp = ;;E \/; Ky By dA (2.68)

Where K is the monochromatic mess absorption coefficient and
the weighting function BK is the Planck black-body function.
When the gas is optically thick at all wavelengths, the gray absorp-

tion cdefficient, in the interior of the gas, is correctly given

by the Rosseland mean mass absorption coefficient

> 0By 1 9By
kg = jo ST dA jo N éT‘d)\ (2.69)

Near a radiation boundary or in regions of rapid (with respect to

the optical path length) variations in thermodynamic properties the
Rosseland mean is not valid. At intermediate values of optical depth,
no single mean absorption coefficient, which depends only on local
thermodynamic conditions can be defined. In fact, as has been pointed
out by Krook (ref. 23) it would be necessary to define an infinite
number of such mean coefficients. This, of course, does not preclude
the possibility of defining approximate mean coefficients under

these conditions.
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Stone (ref. 24) introduced a model in which the monochromatic
absorption coefficient was a step function of frequency with the size
of the steps independent of the geometry or thermodynamics of the
system. By means of this method, the integral over all wavelengths
is reduced to a finite series. Carrier and Averrett (ref. 25) con-
sidered an absorption coefficient with only two steps, one of which
was very much larger than the other. Both of the papers noted above
were concerned with Milne's problem of a stellar atmosphere in
radiative equilibrium. Lick (ref. 11) and later Grief (ref. 12)
studied the problem of one-dimensional energy transfer between two
walls separated by a radiating end conducting gas. A picket fence
model, which is a specialization of the step function model, for the
absorption coefficient was used. Krook (ref. 26) derived expressions
by means of the P-L-K perturbation procedure for a slightly nongray
gas. The solution represents a perturbation to the gray gas solution.
Rhyming (ref. 27) considered wave propagation in a simple dissociating
flow of e radiating gas where the absorption coefficient was given as
a Gaussian function of the frequency.

Hovever, even with the above simple models for the absorption
coefficient, the term I[h] retains an integral character and the
solution to the set of e uation is still very difficult to obtain.
Numerical procedures are extremely tedious. For example, it was
pointed out in reference 9 that the time to obtain solutions on the

IBM 7090 to a similar (though not idential) set of equations with the
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gray gas assumption ranged from 20 minutes to 5 hours. As a result

of this difficulty, several approximate analytical methods have been
derived in order to reduce this term to purely differential form.

One such technique is the Milne-FEddington approximation (ref. 28),

the derivation of which has been based on physical considerations,

but which may also be thought of as a substitute kernal approximation
(ref. 29). The integral terms can then be eliminated by means of a
double differentiation (for a gray gas only). Of course, this
increases the order of the differentiel equation by two. This
technigue has been used by a number of authors in the study of the
dynamics of radiating gases (see for example, refs. 30 and 51)-*
Barbier (ref. 28) introduced the method of expanding the source
function in a Taylor series about the zero of the argument of the
exponential integral kernal, El(jTR(n) - T%(n'”) . Because the kernal
function has a logarithmic singularity at the zero of its argument,

the integral over the first few terms of the series should provide a
good approximation. The resulting integrals can then be evaluated
analytically and the equation becomes purely differential in character.
Yoshikawa and Chapman (ref. 8), Thomas (ref. 33), and Viskanta (ref. 3i)

all used the method of Barbler to different degrees of approximation.

*Traugott (ref. 32) has introduced a "method of moments" in order
to reduce the integral term to differential form. This method may be
taken to any degree of approximation desired (not without a considerable
sacrifice in simplicity however). The first approximation is identical
to the Milne-Eddington epproximation. Traugott's higher approximations
can also be obtained by a substitute kernal method similar to that of
Krook (ref. 29).
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when more than the constant term in the Taylor series is retained,
it may become necessary to introduce additional boundary conditions.
In fact, it may not be enough to merely specify a new condition, it
may be necessary to modify the existing conditions as well so that
in the limit as the varameter N = kk thg (for example) tends to
zero, the solution will approach the proper pure radiation solution.*
Apparently, this point was overlooked by Viskanta. In his paper,
Viskanta blamed the failure of his pure radiation solutions for a
finite optical thickness to exhibit a temperature jump at the wall
on a premature truncation of the Taylor series expansion of the source
function B(T). Actually, this failure was a result of improperly
specifying the boundary conditions.

The diffusion approximation for optically thick gases has been
used extensively in astrophysics and gas dynamics. Probstein
(ref. 35) has shown how to extend the usefulness of this approxi-
mation to gas layers of finite optical thickness by means of radiation
slip boundary conditions. It is not at all clear, however, that these
slip conditions can be used in the problem of this paper because of

the presence of the convection term owdh/dz.

*This parameter, which appears in the literature concerning
energy transport by radiation and conduction, represents the relative
importance of conduction compared to radiation. When N tends to
zero radiation is the dominant mode of energy transport.
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The optically thin approximation of hot gases, in which absorp-
tion is neglected in comparison to emission has also been used exten-
sively in gas dynamics. As Thomas (ref. %3) has pointed out, this
approximation is not valid in those portions of the gas which are
considerably cooler than the remainder of the gas.

In this paper, the integral term I[ﬁ:} will be reduced to alge=-
braic or differential form through the use of various approximations
sinilar to those described above. The manner in which this is to be
accomplished will depend on the order of megnitude of the parameters
€ and kP and vill be discussed in detail in the next four chapters.

Whenever possible, the gas will be treated as nongray.

D. The Inviscid Shock Layer

As was pointed out in chapter I, the studies of this paper will
be concerned only with those cases for which the thicknesces of the
wall boundary layers due to the presence of viscosity and thermal
conductivity are very much less than the shock standoff distance. For
a nonradiaeting ges, the shock layer can be separated intc an outer
inviscid and nonheat conducting region and an inner viscous and heat
conducting region or boundary layer. Considerable simplication will
result if a similar seperation can be achieved in the case of a
radiating gas. As will be shown, such a separation can be obtained
when the boundary is either optically thin or optically thick. Only

the former situation will be considered herein. The method of
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separation follows the procedures delineated by Van Dyke (ref. 36).
Mathematical details are presented in appendix A.

It is shown in the appendix that the significant parameter which
Jdetermines the extent of the boundary layer is the inverse square root

1/2

of the Péclet number, Pe~ . The zero=-order in Pe-l/a systenm of

equations which governs the flow in the inviscid region is

£ (n) n'(n) + eIc{:ﬂ =0 (2.70)

21’0(-.;) f(')‘(u]) - E‘"&(n)-!‘? + a° 3(5(11) = 0 (2.71)
fo(O) =0 (2.72)

fo(nA) =1 (2.73)

fa

t _e Ay & .7k
() "X(Rs)“m (&)

ho(“a) =1 (2.75)

\

The dependent variables fo(n) and ho(n) are the asymptotic values
of f£(n), the nondimensional streeam function, and h(7n), the non-

dimensional enthalpy, respectively as Pe'i/g approaches zero.
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In the boundary layer, the zero-order system of equations is
E}l(iO)ié(é)‘l + g (8)ig(8) + eg )= 0 (2.70)
- s " ! i1 ' 2 )
:ePrSBt2 i go(gﬂ +2g (&)g)(¢) -rgo(gﬂ, + agag(io) =0
L J L Y .
(2.77)
8,(0) = 0 (2.73)
g(')(o) =0 (2.79)
L g(8) = £2(0) (2-80)
£ - o
§1§323°(0) =h (2.81)
1o(g) = hO(O) (2.82)
The independent variatle ¢ 1is the "stretched"” boundary layer coor-
dinate defined by the relation
£ ~pel/? n (2.83)

The dependent variables g(¢) and i(%) are defined by the expressions

1(&) = n(n) | (2.81)
g'(e) = £'(n) (2.85)
-1/2

in the boundary layer as Pe approaches zero.
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The integrals which appear in the second of these expressions are
definite integrals. Conse,uently, the system of equations governing
the flow in the boundary layer is a purely differential system.

It must be realized that expressions (2.86) and (2.87) are
restricted to the case of an optically thin boundary layer. It is
only in this case, and the case for which the boundary layer is
optically thick, that a2 complete separation between the inviscid
region and the boundary layer can be achieved. At intermediate
values of optical depth, the integral term Io[i] is a function
of the enthalpy distribution in the boundary layer in addition to
being a function of the enthalpy distribution in the inviscid region
so that the equations in the inviscid region and the boundary layer
are coupled. The influence on the inviscid region of radiation from
an optically thick boundary layer cannot be neglected. However, most
of' this radiation originates at the outer edge of the boundary layer.
The boundary layer solution in this region is constrained by matching
conditions to approach asymototically the value of the inviscid
solution at the wall. Hence, the radiation contribution to the
inviscid region from the boundary layer can be obtained from the
inviscid solution at the wall, leaving the inviscid solution uncoupled
from the boundary layer solution.

This restriction to an optically thin boundary layer is not so
severe as it might first appear. This is because the optical thick-

ness of a boundary leyer in vhich the absorption coefficient is the
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same order of magnitude as it is for shock heated air will not exceed
about 0.1 at any altitude and velocity (up to km/sec) for a shock
radius of 1 meter or less. In fact, the optical thickness of the
boundary layer will be less than 0.1 at that point of the trajectory
of a Martian or Lunar return vehicle with a shock radius of about

1 meter for which heating is a maximum even if the absorption coeffi-
cient in the boundary layer is 100 times that of shock heated air.
That this should be the case is not sc difficult to see when it is
realized that both the optical path length and the boundary layer
thickness decrease rapidly with decreasing altitude. Thus, at low
altitudes where the optical path length is small and the shock layer
may be optically thick, the boundsery layer thickness is very smell.
For larger objects, the boundary layer need not be optically thin at
the lowver altitudes because the boundary layer thickness depends on
the size of the object while the optical path length does not.

These conclusions regarding the optical thickness of the boundary
layer generally concur with the observations of Fay, Moffatt, and
Probstein (ref. 10). Henceforth, the discussions of this paper will
be limited to the case of an optically thin boundary layer and
radiation from this boundary layer will be considered to have no effect
on the solution in the inviscid region of the shock layer.

If the inviscid system of equations (2.70) through (2.75) is
solved for the nonradiating case (e = O) along with condition (2.63)
one finds that the ratio of the shock standoff distance to the shock

radius is given by the expression



L6

. X (2.08)

1+ ’\/E'X(l - X)

Hayes (ref. 57) obtained the same result vhen the shock and body

mnq:j>

surfaces near the stagnation point are concentric spheres. When
the shock and body surfaces are not concentric (i.e., RS # RN + A)
condition (2.88) is still approximately true over a wide range of

body shapes (see, for example, refs. 38 and 39). With this result

g = 2 Vax(1 - X) (2.59)
1+ ’\/ZX(l- X)

This value for a, the constant sppearing in the momentum equa-

tion (2.71), will be used throughout the remainder of this

investigation.

E. Thermodynamic and Optical Property
Correlations
In order to achieve meaningful results, an attempt has been

made in this paper to use simple yet physically reasonable approxi-
mations to the thermodynamic end optical properties of high tempera-
ture gases. In particular, coorelation formulas were derived from
the existing store of information about equilibrium air. The thermo-
dynemic properties were obtained from reference 40, for temperature
up to lOO,OOOO K and pressures from ZLO-5 to lO2 times atmospheric.
The optical properties were obtained from a variety of sources which

will be noted later.
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It was noted from the data of reference L0, that both the density
and temperature could be approximately represented by functions
separable in the variables pressure and enthalpy. More specifically
in the form Q/po)n f(%/%ﬂ%J. Plots of the functions f(H/RTO) for
the density and temperature at various pressure levels are presented
in figures 2.1 and 2.2, respectively. It is apparent from these plots
that the density and temperature can adequately be represented by the

expressions

0.96 -1
p P ' h
L) = 7.0uy -—-) ——-) (2.90)
(;o) p0 RT0
0.09 0.55
_ el _h o
T - 308.8(1)0 ) (RTO ) % (2.91)

A number of investigators (see, for example, refs. 41-45) have
calculated the radiant properties of equilibrium air for temperatures
up to 25,000o K and for densities from lO"6 to 10l Amagats. Because
of the extremely complex nature of these calculations, the many
physical processes which produce radiation, and the uncertain knowl-
edge of cross sections and transition probabilities the scatter among
the various calculations is often quite large. Some of the results
for the Planck mean mass ebsorption coefficients are presented in
figure 2.5.

A correlation formula can be obtained from figure 2.3 by

approximating the curves of Ioglo PR, versus LOglOT with straight
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lines. The resulting formula is

J.25 P
26 [p 6.0-0.5Lo
pry = T-94 x 10 £ 7 €10P, cm (2.92)
P
0
This is not a particularly convenient form for use in the calculations

of' this paper. It is much more desirable to express the Planck mean
mass absorption coefficient KP in terms of the pressure and enthalpy.
This was done by cross-plotting the logarithm of the absorption
coefficient data shown in figure 2.7 against the logatithm of the
temperature at constant pressure. Straight lines were then fitted

to the resulting curves. Finally, the correlation formulas (2.90) and

(2.91) for density and temperature were used to obtain the formula

-0.34-0.14Log, 2 5.55-0.2kog, &
10 10 h 10p 2
KP = 1.39 x 10 (I_’p_) Po (R“'"T ) O) cm/gm
o} O

(2.93)

This formula is valid for temperatures up to 20,0000 K at the higher

pressures (i/po - 107t

to 101) and to somewhat lower temperatures
at the lower pressures(’for example, when p/po = lO-3 the maximum
temperature at which the formula is velid is 15,0000 ﬁ).

In addition to the Planck mean, it is necessary to know the

spectral variation of the mass absorption coefficient. Results of
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some typical calculations of the monochromatic mass absorption
coefficient plotted as functions of wavelength for constant tempera-
ture and pressure are presented in figure 2.4. No attempt was made
to correlate these data.*

At temperatures above about 20,000o K, the information about the
radiative properties is not so comprehensive. Most of what exists
consists of Planck and or Rosseland mean absorption coefficients for
continuum radiation. Line radiation is neglected. At these high
temperatures, the radiation consists of spectral lines of the various
ions which mey be appreciable Stark-broadened at high electron
densities, and & continuum due to free bound and free-free transitions
of electrons in collisons with the ions. Since the integrated line
emission is proportional to the ion density while the continuum
emission is proportional to the product of ion and electron densities,
the ratio of the latter to the former increases with increasing
density. Thus, at the higher density levels, the continuum calculations

may be adequate.

*
It wvas noted from the results presented in references 45 and L6
that the functional form of the monochromatic mass absorption coeffi-
cient is approximately

o (h) = Z my(n) g, (N) (2.9%)

where the subscript refers to the 1lth radiating species.
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CHAPTER III. THE SMALL PERTURBATION SOLUTION

A. The Conventional Method

As was pointed out in chapter I, there is a flight regime of
considerable importance in which the radiation cooling parameter e
is very much less than unity. In this regime, the energy transferred
by radiation is small compared to the influx of kinetic energy across
the bow shock, and it would be reasonable to expect the flow prop-
erties to be only slightly perturbed from the radiationless case.
Lunev and Murzinov (ref. 4) end Goulard (ref. 5) took advantage of
this and developed what emounted to first order perturbation solutions
of the temperature distribution in the inviscid region of an
transparent, gray gas layer. In both these papers, simplifying
assumptions concerning the gas properties and flow model have been
included.

In this section, the perturbation solutions will be generalized
to include nongray gases with arbitrary thermodynamic and optical
properties. These solutions will not be limited to shock layers of
small optical thickness. Also, the solutions will be extended to
second order. As will be shown, the second-order sclutions can be
quite important when the absorption coefficient varies rapidly with
temperature.

The integrodifferential system which governs the flow in the

inviscid region of the shock layer is

62
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£(1) h'(n) + eI[n]= 0 (3.1)

2f(n) £"(n) - [:f'(n)]2 + 8" n(n) =0 (3.2)
£(o) = 0 (3.3)

f(nA)= 1 (3.4)

()= 1 (3.5)

0 o
5 2x(1 - X)
Here f(n) and h(n) are the nondimensional stream function and
enthalpy, respectively. The quantity T is the value of the
Dorodnitsyn coordinate at the location of the shock. The constant
a can be expressed in terms of X, the density ratio across the
shock, through expression (2.89). When the radiation cooling
parameter € ig very small, the integral term in equation (3.1)
becomes of only secondary significance throughout most of the domain
of the problem.* Neglecting the integral term I[hj] reduces the
problem to one in which radiation does not play a part. If, as

expected when € 1s small, the presence of radiation only slightly

*
With the obvious exception of the region 7 =0 where f(n) = 0.
The difficulties presented by this exception will be discussed later.



influences the solution one can, to reasonable accuracy, evaluate
I[ﬁ:] using the radiationless solution for h so that equation (3.1)
becomes purely differential. Thus, when the small perturbation
procedure (which roughly proceeds in the manner outlined above) is
applied to this problem, the integrodifferential system is simplified
to a purely differential system. In addition, as a result of the
nature of the lowest order solution for the enthalpy distribution,
the two differential equations become uncoupled and can be solved
independently. Hence, it becomes possible to obtain analytic solutions
to any order of approximation to the flow in the inviscid region of
the shock layer. Details of the derivation of these solutions are
presented in appendix B.

The zero=-order, or radiationless, solution is simlpy

h (1) =1 (3.7)
© 2 . 5.8
£ (1) = (1=-a)g” +ay (3.8)
The first-order solution, which represents the effect of radiation

assuming that the emissive power of the gas is independent of

temperature, is

Jfl IOYEJdX (5.5
i

(1 - a)x” + ax
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1 0. (x)
£.(n) = - -;-{Ec’(l - a)y+ a_]fo [(1 _la)x - Q dx

(3.10)

2 1 2(1 - a)x + a
+ o, (x) 4
n x/;xgl__'(l-a)x+a] 1

Here x 1is a dummy variable of integration. The quantity Io[h] is

given by the formula

—~

L] = - J/: “» B {Ei’[}?\(l y ”’J

(3.11)
+ (1 - ro_\)Ea[k?\ 1]:l an
The notation has been simplified somewhat in this expression by
omitting the arguement h0 in the terms Ky and B>\ and by
introducing the quantities
]g{x = k,P K.}\ ()-12)

ro}\ =T [1 - 2L, (1;?\)] (3.13)

Also
¢ (n) = -2 & n(n) (5.18)

The second-order solution takes into account the change in

gas properties with changes in enthelpy. This solution is



1 0, (x)

-%@u-am+g\£

1
2 I -
2 2(1 - a)x + a o ()

Jn xzal - a)x + 53]2 2

Oy =

vhere

11[{] = hy(n) J[: {kx B, {Eg[k}\(l - 1]

+ (1 - rOK)EQER)\ ﬂ} - 2x, }'37\} aA
A k%{"x 3, fol my ) B i - x{Jax

1

+ »7\ By El[l<7\(l - ’1):] fq hl(x) ax

| n
+ (1 - roQ El[kknj JF hl(x)d% + rl7\ EEER?\n] daA
)

Bl-ﬂx+ﬂ§u
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(3.15)

(3.106)
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Here the arguement hO is omitted in the terms h.)\ and B?\ and the

quantity ry is defined by the expression
A
. [\l (
r, = 2r B h,(x) E. [k x) dx
17\ A W ) ‘éo 1 2(7\
(5.19)
rl
+ k, B, E.(k | ho(x)dx + B, E
By B ) J, T, "\ B 2(5)
Also
1 2 3 2
o,(n) = -f,(n) £3(n) + 5 [fi(:]{] - 58 hy(n) (3.19)

The quantities UINE 'qu, and N, are given by the formulas
o] 2

nAO =1 ‘ (3.20)
= = 3.21)
nA.L 2 ‘-/o [(1 -a)x + a]e * (
a-anf v} [ P %W (5.22)
= - a + = dx -2
TIA2 T]Al 2 o [(l -a)x + a]g >

It can be seen upon inspection of relation (3.17) that a large
value of the rate of change of the Planck mean absorption coefficient
with enthalpy will lead to large values of Il[n] . Thus, it 1s clear

that at shock temperatures of less than about 30 ,OOO° K, for which the



absorption coefficient does vary rapidly with enthalpy, the second-
order solutions can become more important to the overall solution

than their order in € might at first indicate.

B. The P - L - K Method

As can be seen from an inspection of the expressions (3.9) and
(3.15) the first order solution for the enthalpy distribution has a
logarithmic singularity at the point n = O and the second-order
solution has a singularity of greater strength at this point. As a
consequence, the assumed expansion diverges as the origin is approached
and the small perturbation solution is not uniformly valid throughout
the domain of the problem. This divergence can lead to serious errors
in the calculation of the radiant heat flux to the wall because those
regions close to the wall, in which the largest errors occur, are
given the most weight in the calculation. This is perticularly true
for shock layers which are not optically thin. Additional difficulties
are encountered when attempting to specify the proper outer boundary
conditions for the viscous boundary layer equations. In classical
boundary layer theory, the outer boundary conditions are obtained
from the values of the outer (or inviscid) solution at the wall
(n = 0 in this problem). Because of the divergence of the outer

solution, no finite value exists at 7 = O.
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In this section, the Poincare-Lighthill-Kuo perturbation of
coordinate procedure* (ref. 47) is used to obtain a solution which
is uniformly valid over the domain of the problem. The details of
the application of this method to the problem of this paper are
presented in appendix B. This method utilizes a coordinate trans-
formation in the form of a perturbation expansion of the coordinate
to remove the singularity (which caused the divergence of the con-
ventional solution ) from 7 = 0 +to a smell negative value of 1

vhich lies outside the domain of the problem. The P-L~K expansions

are
n=x+ e'q; (x) + .o. (5.23)
h(nse) = h: (x) + ehI (x) + ... (3.24)
£(n3€) = £ () + ef] () + .. (3.25)

vhere x is the coordinate in the transformed plane, and the
superscript * has been used to differentiate between the coeffi-
cients in the P-L-K expansion and the coefficients in the conventional
expansion. Pritulo (ref. 48) has derived a general relation between
the P-L-K and conventional coefficients. Adapted to this problem,

the relationships become

*Variously called the P-L-K method, the P-L method, Lighthill's
technique, the method of strained coordinates, and the method of
perturbation of coordinstes.



-

h: (x) = n (x) (3

By (x) = b (x) (3

£ (x) = £ (x) 3

f; (x) = £, (x) + ny (x) £ (x) G
n.; (x) = -n, (x),/.-l' (x) (.

The second-order term h2 (x) introduces the effects of variable
thermodynamic and optical properties, so it is apparent that these

effects are contained in the first-order P-L-K solution.
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.26)

.27)

.28)

-29)

\N
o
N

A comparison of the P-L-K and conventional perturbation solutions

for the enthalpy distribution for a constant density, transparent
shock layer is presented in figure 3.1. The divergent character of
the conventional solutions is apparent. Also shown on this figure
is the exact eanalytic solution which can be obtained in this simple

case. The formula for this exact solution is

1
L+ RG
h(-%) =(1 + ke(y = 1) log _%7(%39_) (3

vhere 7 (the exponent in the correlation formula KPB = hy) was

taken to be 6 and the constant a (which appears in the momentum

.31)



/ € =O.l, kp=O
- / p = const, KPB = h6

Exact solution (eq. (3.31))

/ — = = — = Zero-order perturbation solution
—— — First-order perturbation solution
I / —— =——— Second-order perturbation solution
- o P-L-K solution
2 4 6 .8 1.0

”/ A

Figure 3>.1.- Comparison of the P-L-K and conventional
perturbation solutions.

71
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eq. (3.2)) was taken to be 0.5. The good agreement between the
P-L-K solution and the exact solution indicates that the accuracy
of the P-L-K solution is probably second-order in the radiation
cooling parameter € throughout the domain except in the immediate
neighborhood of the wall. It is clear that quantities such as the
radiant heat flux at the wall, which depend upon an integration
over the enthalpy distribution, will be considerably more accurate
if the P-L-K solution rather than the conventional perturbation
solution is used.

It should be noticed that the P-L-K solution does not lead to
zero enthalpy at the wall as the exact transparent solution does.
The reason for this disparity can be found in the fact that the
coordinate stretching displaces the boundary with regard to both the
energy and momentum equations but not by a uniform amount. Thus, a
physical interpretation of the first order P-L-K solution is that the
normal velocity of the flow at the boundary for the energy equation
is not quite zero, and a particle approaching this boundary will
reach it in a finite time before losing all its energy by radiation.

It can be shown that since the expected error in the Dorodnitsyn
coordinate 7 in terms of the stretched coordinate x is order 62
and since the gradients in hl (x) are very large in the vicinity
of the wall, the difference between the P-L-K and exact solutions at
the wall lie within expected limits. Convergence to the correct
solution should be attained with the addition of higher order terms

to the expansion of h and 1.
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C. The Method of Matched Asymptotic Expansions

Van Dyke (ref. 36) has pointed out that the method of matched
asymptotic expansions is applicable whenever the P-L<K method can be

used. Thus, it would be interesting to formulate the soclution when

radistion is a8 small nert
radlation 18 8 s Der

totic expansions. Use of this method implies that the domain of the
problem can be divided into at least two regions in which the governing
equations take on different asymptotic forms. There must also be some
overlap between adjacent regions so that a smooth transition between
solutions valid in these adjacent regions can be affected. In the
problem of this chapter, the regions are the "outer" region in which
the conventional perturbation solutions are valid and the "inner"
region in the vicinity of the wall at 1 = O. The equations which
describe the conditions in the outer region are simply the system (3.1)
to (3.6). 1In order to obtain the "boundary layer" form of these
equations, it is necessary to stretch the coordinate n in the

vicinity of the wall. This stretching tekes the nonlinear form

F(&) =[2(n)]° (3.32)

F'(E) = £'(n)

where £ 1is the stretched boundary layer coordinate and F(E) 1is
the velocity function written in terms of §&. It follows from

above that

(3.33)
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and the energy and momentum equations, respectively, take the forms

F(9)E'(8) + I[] = 0

2F(&)F (&) - [F'(&)] + &° H(E) = 0

where

H(t) = h(n)

and

jond i

I I[ﬂ

One boundary condition is available, that is

FO) =0

The remaining two constants of integration can be obtained by

matching the inner and outer solutions according to the matching

principle put forth in reference 36.

The boundary layer system is seen to be quite complex. The

(3.3L4)

(3.35)

(3.36)

(3.37)

~~
S
Ui
S0
N’

energy and momentum equations remain coupled so that it is necessary

to obtain & simultaneous solution to the two equations. Thus, as

is often the case when the P-L-K method can be applied, its

application is much simpler than the method of matched asymptotic

expansions.
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D. Results and Discussion

The formulas derived in the preceeding sections of this chapter
were programed for numerical computation on the IBM 7094 electronic
digital computer. The value of X, the density ratio across the
normal shock, was fixed at a constant value of 0.06 for the calcula-
ions reported on in this and subsequent chapters. This choice is
Justified because X varies but little with altitude and velocity
and the effects of this variation on the stagnation solutions are
slight. The value X = 0.06 is typical for hypervelocity flight in
the atmosphere of the earth.

The numerical calculations indicate that the enthalpy is a
double valued function of the Dorodnitsyn coordinate 1 in the
vieinity of the shock for large values of the Bouguer number.

An examination of the governing equations failed to chow the presence
of any singularities which might adversely influence the solution in
this region when kP is large and € small. On the other hand,

the results of numerical calculations with varying mesh size seemed
to rule out the possibility that the doubled valued behavior can

be attributed solely to numerical inaccuracies. Consequently, it is
suspected that the difficulty results from truncation of the
perturbation expansion and that inclusion of higher order terms would
either eliminate the problem or increase the value of kP at which
it first appears. For truncation after the second order term the

conditions for validity of the solution is ekP < 1.
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Gray gas results

Shock layer enthalpy distributions for a gray gas with differing
values of the radiation cooling parameter €, the Bouguer number kP’
the variation with enthalpy of the Planck mean mass absorption coeffi-
cient RP’
in figures 3.2 to 3.4. While the gray gas assumption may not be

and the reflectivity of the body surface r, are presented

realistic for most gases of interest, its use is felt to be justified
in the study of the above listed parameters for two reasons. First,
the highly complex and varied spectral structure of absorption
coefficients makes a general parametric study of nongray gases imprac-
tical. ©Second, experience with nongray calculations indicates that
the qualitative dependence of the gray results on the various parame-
ters will carry over to most nongray cases.

The decrease in enthalpy level with increasing € is illustrated
in figures 3.2a to 3.2c. These results indicate that the loss of
energy from the shock layer by radiation (i.e., radiation cooling) can
produce a noticeable drop in enthalpy for values of ¢ as small as
0.01. The dependence of the enthalpy distribution on the Bouguer
number (hence, optical thickness) is also shown in these figures.

As expected an increase in the Bouguer number (or optical thickness)
inhibits shock layer cooling and leads to higher values of enthalpy

near the wall.
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The variation of the enthalpy distribution with K.P (the
enthalpy variation of the Planck mean mass absorption coefficient)
for several values of the Bouguer number kP is shown in figures %.3a
to 3.5¢c. These effects are most noticeable for optically thin shock
layers (kP << 1.0) and tend to vanish as the optical thickness
increase;. In a tr;nsparent layer, the rate of emission of radiant
energy is proportional to the Planck mean mass ebsorption coefficient
Kpe Thus, sases with small values of *P (which mean larger values
of Kp when the nondimensional enthalpy is less than 1) will be
cooled more than gases with large values of kP' As the optical
thickness increases smsaller kP still implies greater emission rates
but it also means greater absorption and more radiant energy available
for absorption. The process of esbsorption tends to counteract the
differences in emission rates due to differences in kP. Finally,
when radiation equilibrium is reached (this state 1s achieved in the
interior of optically thick regions) the energy of the particle is
independent of its opticel properties. Of course, in those regions
optically close to the shock and the wall the amount of radiant energy
available for absorption is not so great as in the interior of the
shock layer and particles in these regions cannot approach the state
of radiation equilibrium (except in & region optically close to a
perfectly reflecting surface). Thus, the enthalpy distribution
remains dependent on the value of RP near the shock and the wall.

This dependence of & is surpressed near the shock where h is
“p
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almost 1 because the values of kp are nearly the same dispite the
differences in kp.

The effect of surface reflectivity, r, on the shock layer enthalpy
distribution is shown in figures 3.4a to 3.ke. If the shock layer gas
is transparent (i.e., the gas does not absorb) surface reflectivity
has no effect on the enthalpy distribution because all photons emitted
by the layer escape. Whether or not a photon is absorbed or reflected
by the wall is of no consequence. As the optical thickness of the
layer increases the chance of capture of a photon by absorption in
the layer is increased. If the surface reflectivity is increased also,
the probability of capture is increased still further because many
photons which might otherwise have escaped into the wall are reflected
back into the layer and are once again subject to capture there.
Consequently, the enthalpy level is higher near a reflecting wall
than it would be near a nonreflecting wall.

It can be concluded from the above, that use of a reflecting
surface will not reduce the radiant heat transfer rate from the gas
to the wall by the factor 1 - r, (unless, of cource, the gas is
transparent) but will reduce it by some smaller fraction. This is
because the radiant heat flux incident on the wall is larger when the
wall is reflecting as a result of the higher enthalpy level. In
addition, the rate of heat transferred to the wall by conduction
will be greater, also because of the higher enthalpy level. Of

course, increasing the surface reflectivity always decreases



the total heat transfer rate to the wall because the higher enthalpy
level must lead to an increased loss of energy by radiation through
the shock in the upstream direction and by convection in a lateral
direction away from the stagnation point. If the energy balance is
to be maintained, the rate of heat transferred to the wall must be
reduced.

The effects of variations in the paremeters ¢, kP, @P, and T
on the rate of radiant heat transfer to the wall (normelized by the
energy influx to the shock layer, % P, Wz) qS are shown in figures
3.5 to 3.7. The rate of radiant heat transfer to the stagnation

roint was calculated with the formuls

qs = 6(1 - rw) j;nA sp(n) B(q) EE(kP T(n)dn (3.39)

where the optical thickness kP T 1is given by

kp (1) = Ky fﬂ rp(n)dn (5.50)

(o]

The dashed curves in figure 3.9 indicate the '"no decay limits"
for various values of the Bouguer number. These limiting curves were
computed by assuming the shock layer to be isenthalpic so that
KP(Q) = B(71) = 1. Thus, the no decay limit curves are given by the

formula

qu = e(l - rw) - -2:3( kP) (3.41)
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Figure 3.7.- Effect of surface reflectivity on the rate of radiant heat
transfer to the stagnation point.
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where E3(kp) is the exponential integral function of third-order.
This no decay approximation is often used to predict the rate of
radiant heat trensfer when radiation effects are small. Use of this
approximation always gives én upper bound to the true value of qS'
A study of figure 3.5 indicates that the no decay limit curve is
least accurate in predicting the rate of radiant heat transfer in
the transparent case kP = 0 . This result is expected because the
enthalpy distribution for the transparent case is the most perturbed
from an isenthalpic state. Results presented in this figure also
indicate the importanceor absorption (as characterized by the Bouguer
number kP in reducing the rate of radiant heat transfer from the
shock layer to the wall.

The results presented in figure 3.5 indicate the differences in
kP’ the enthalpy variation of the Planck mean mass absorption coeffi-
cient, are most important when the optical thickness of the shock
layer is small.

Here the radiant heat transfer to the wall is greatest for the
smallest value of kP' This, of course, supplements the observation
(from fig. 3.3%a) that radiation cooling is greatest for gases in
which kP is least. The differences in radiant heat transfer to
the wall brought about by differences in the value of kP tend to
vanish as the optical thickness of the layer increases.

The reduction in radiant heat transfer to the wall due to surface
reflectivity is shown in figure 3.7. When the shock layer is trans-

parent, the rate of radiant heat transferred qs is in the ratio
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l - rw. However, as the optical thickness of the shock layer increases,
the ratio becomes somewhat greater than 1 - T, as predicted in an
earlier discussion of this section.

The effect of the parameters e, kP, and r. on the shock standoff
distance is shown in figures 3.8 and 3.9. The quantity 18' is the
ratio of the shock standoff distance in a radiating shock layer to

that in a nonradiating (or adiabatic) shock layer at the same flight

conditions, and was computed with the formula

- n
A - fOA h(y)dn (5.33)

The results shown in figures 5.8 and 3.9 indicate, as expected,
that a decrease in enthalpy level (with the consequent increase in

density level) in a shock layer leads to a reduction in shock stand-

off distance.

Nongray results

It can be seen from figuies 2.4 that the absorption coefficient
of high temperature air depends strongly on wavelength. This is true
of all other gases as well. Consequently, the assumption that the
gas is gray (i.e., that the optical properties of the gas are inde-
pendent of wavelength) is poor indeed, and has been resorted to so
frequently in the literature only because of the resulting relative
simplicity. Fortunately, the small perturbation solution derived

in this chapter overcomes these difficulties by reducing the
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absorption integrals in the divergence of the radiant flux to a form
amenable to direct eveluation. Thus, one need only perform an
integration over & xnown, albeit complicated, function of wavelength.
In view of the current uncertainties, with regard to spectral dis-
tributions of gaseous absorption coefficients, it was decided to use
a simplified model for the absorption coefficient of air. Consequently,
the step function model shown in figure 3%.10 was chosen for use in
calculations to be reported on herein. The height and width of the
steps were chosen so that the simple step function model provides an
adequate representation of the absorption coefficient of air at a
temperature of about 15,000° K as predicted by Nardone et al. (ref. L5)
and so that the Planck mean absorption coefficient of both distri-
butions are ejual. The relative heights of the nine steps located
at wavelengths less than 0.1135 microns were chosen to be independent
of enthelpy while the tenth step which covers the wavelength interval
(0.113, ) was chosen to vary as the 1.28 power of the enthalpy. The
relative heights shown in figure 3.10 are for h = 1, where h 1is
the nondimensional enthalpy. The enthalpy variation of the step
heights listed above is consistent with the condition that the Planck
mean mess absorption coefficient is proportional to the fourth pover
of the enthalpy.

Shock layer enthelpy distributions were calculated using the
nongray ebsorption coefficient model for various values of the

Bouguer number, kP. A comparlson of the results of these calculations
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with gray calculations using the Planck mean mass absorption
coefficient is presented in filgures 3.1la to 3.1llc.

The maximum monochromatic Bouguer number for the nongray shock
layers is 186 times the Planck mean Bouguer number. When the Planck
mean Bouguer number kP is less than about 0.001 (this case is not
shcwn) the shock layer is opticelly thin at all wavelengths and no
perceptable difference between the nongray and the gray calculations
for the enthalpy distribution can be found. When kP = 0.01 the
monochromatic Bouguer numbers for several of the steps are order of
magnitude unity and ebsorption becomes important in the nongray
model whereas absorption is still negligible in the gray model. As
a consequence, of the above the enthalpy distribution for the non-
gray model lies above that for the gray model. When kP is
increased to 0.1, the disparity between the two solutions is
increased still farther. In this case, absorption is very important
in those regions of the spectrum for the nongray model in which much
of the energy is emitted. Absorption is still of minor significance
in the gray model. When kP = 1.0 absorption beccmes important in
the gray model but still not to the extent that it is in the nongray
case.

Obviously, and not unexpectedly, a gray model which uses the
Planck mean mass absorption coefficient will not provide an acceptable
estimate of the shock layer enthalpy distribution for a nongray gas

unless that gas is optically thin at all wavelengths in which a
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significant amount of radiation is transported. Nevertheless, it is
very interesting, and encouraging to note that enthalpy distributions
computed for the nongray models do not differ significantly in their
general shape from those that can be computed for gray models. Thus,
it appears that there is some wavelength averaged absorption coeffi-
cient (other than the Planck mean when absorption is important but
tending toward it in the transparent 1limit) which will provide a good
approximation to the enthalpy distribution in a nongray geas.

The rate of radiant heat transfer to the stagnation point has
been calculated for nongray shock layers. The results are compared
in figure 3.12 with the results of gray calculations using the Planck
mean absorption coefficient. The gray approximation provides a
considerable overestimate of the radiant heating even for vaelues of
the Planck mean Bouguer number as small as 10-3. It is apparent from
this result that the tallest steps play a very important role in the
transfer of energy by radiation. This is not surprising when one
considers that nearly 40 percent of the energy emitted by a particle
in the shock layer is transmitted in the wavelength intervals occupied
by the three tallest steps.

It can be concluded from the foregoing discussion that the
effective optical thickness (or Bouguer number) of a nongray shock
layer is greater than that predicted by a gray analysis using the
Planck mean absorption coefficient. In order to account for this by

means of average absorption coefficients, it seems proper to follow
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the advice of Viskanta (ref. L49) and introduce a "mean emission
coefficient” and a "mean absorption coefficient." As Viskanta
pointed out, the divergence of the radiant flux is composed of two
terms, one of which accounts for emission and the second for absorp-
tion of radiation in an element of volume of radiating media. In
particular, for this investigation, the divergence of the radiant

flux may be written (see ey. (2.67))

Fat

el[ﬁ] = ~2€ L/0 Kx(n) Bx(n)d% + el kJ/r;weK-A(Tl) Gx(n)d%

(3.34)

where

n
6. (n) = /; REENCD By(n') El(kf,lv)\(n) - T%(n')l)dn'
(5.35)

rer Eg(kP Tk(ﬂ))‘quﬁ r(n') By (') Eg(kp Tk(ﬂ'))dﬂ'

The first term on the right-hand side of equation (3.3L) is the local
emission term. The integration over wavelength can be performed for
this term using the definition of the Planck mean absorption coeffi-

cient (eg. (2.68)) so that equation (3.34) becomes

elln] = -2exy(n) B(n)
(3.36)

+ ek k[:n Kk(n) Gk(n)dk
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Thus, the mean emission coefficlent is identical to the Planck mean
absorption coefficient. The mean absorption coefficient can be

defined by the formula

fm (1) Gy (n)ar

2 (3.37)

k. (n) =

/\co
, P
5 Gx(n)dk

o
Unfortunately, the spectral characteristics of the qQuantity 57\( 1)
vhich represents the amount of raediant energy incident per unit mass
on an element of mass located at 1, depends on the spectral charac-
teristics of the radiating media and the boundary surfaces. Therefore,
the spectral distribution of G%(n) will not be the same as that of
the Planck function Bx(n) which depends only on the temperature at g
and in general Ky $ Kpe The primary difficulty involved in the

determination of the mean absorption coefficient &«  is that the

o

mntity Gx(n) is not known rigorous

aQu
been solved. This difficulty does not arise in the use of the small
perturbation method of this chapter, of course, because the quantities
in the equations of various order in € corresponding to Gx(n) are
known rigorously from the solution of the lower-order equations. In
problems vhere Gx(n) is not known explicitly, it is hoped that it

will be possible to obtain a reasonable first approximation.



CHAPTER IV
OPTICALLY THIN SHOCK LAYERS

A. The Transparent Approximation

Under certain conditions, the Bouguer number, which is indica-
tive of the opticel depth of the shock layer, is very smaell compared
to unity. When these conditions are met, absorption is unimportant
and the absorption integrals which are modified by the Bouguer number
can be dropped from the expression for the divergence of the radiant
flux vector (see eq. (2.86)). This leads to considerable simplifi-
cation because only the local emission rate of rediant energy need
be considered. All of this radiant energy is assumed to escape the
shock layer and it matters not, insofar as the gas is concerned,
what path it takes. Consequently, surface reflectivity will have no
influence on the enthalpy distribution in the shock layer. Since
ate of radiant energy emitted locally is of interest
the details of its spectral distribution can be ignored.

The results of the simplification is the "transparent" form of

the divergence of the radiant flux vector

In] = 2x,(n) B(n) (b.1)

Where I[h—] is the divergence of the radiant flux vector, KP(q)
is the Planck mean mass absorption coefficient, and B(n) the Planck

black-body function. The shock layer is termed transparsnt because

106
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the gas is transparent to its own radiation. Use of the transparent

approximation reduces the governing equations from integrodifferential
to purely differential form. Several investigators (see, for example,
refs. L-T) have taken advantage of this simplicity to obtain approxi-

mate analytic solutions.

B. The Optically Thin Approximation

In this paper, a distinction shall be made between the terms
"transparent” and "optically thin." A layer of gas will be called
transparent 1f none of the radiation emitted by the gas in the layer
is reabsorbed. An optically thin layer is one in which a small
emount of absorption does occur and the optical depth of the layer
is small but not zero. In the literature, "optically thin" is often
used synonymously with "transparent"” as defined above.

P. D. Thomas (ref. 27) expressed concern about the validity of
the transparent approximation, particularly in the highly cooled
region adjacent to the cold wall. The transparent approximation is
based on the assumption that emission is much greater than absorption
throughout the shock layer. In regions of small enthalpy, emission
no longer dominates absorption, and when radiation cooling effects
are large, these regions may extend over a significant portion of

the shock layer. Even when radiastion cooling effects are small, the
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value of enthalpy adjacent to the wall tends to vanish* and absorption
must become important compared to the local rate of emission. Of
course, for this case, the region of nonvalidity is very small and has
no appreciable effect on overall properties such as the radiant energy
flux to the wall and the shock standoff distance.

Thomas sought to modify the transparent equations in order to
take into account this small amount of reabsorption. He did so by
expanding the Planck function B}(t) vhich appears in the integrand
of the divergence of the radiant flux vector in a Teylor series about
the zero of the argument of the displacement kernal El(kPITK - t%’).
The expansion is then arbitrarily truncated after the linear term.
Strictly speaking, this procedure can be used only when the Planck
function varies slowly within & photon mean free path length. Obviously
this criterion is not met when the shock layer is optically thin
(particularly close to the wall, the region of greatest interest,
vhere the enthalpy and hence, the Planck function varies rapidly) and
some doubt must be cast on the wvalidity of Thomas' analysis.

It would appear that the effects of small absorption could better
be discovered through a straightforward expansion of the equations in

terms of the Bouguer number kP. Such a solution, up to first-order

*An element of gas approaching the wall requires an infinite time
to reach its destination. Because of this and the fact that the rate
of energy lost by radiation is proportional to a positive power of the
enthalpy, the enthalpy of a transparent gas must approach zero as the
particle approaches the wall.
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in kP’ is presented here. In order to simplify the analysis the
exponential integral functions Eg(x) and EB(X) vhich appear in
the expression for the radiant flux are replaced by the exponential

. =2%
functions e

and (l/2)e-2x, respectively. The particular form of
the exponentiel functions was chosen so that the area under the
curve of E2(x) and the approximaﬁing exponential are equal for
the interval (O, %A)’ for x, <<'1, and so that the value for the
radiant flux reduces to the proper value in the transparent limit.
This substitute kernal approximation has been used with considerable
success in a variety of problems of radiant transfer (see, for
example, refs. 11, 30, 31, and 50).

Use of the substitute kernal approximation reduces the expression

for the radiant flux to the form

-2kp |\ (1) -7, (€) |

nee | .
' = ¢ [ [ B (08 (051, () -y (2)]e at
o] (o] !
2k _7.(n) rn -2k 7. (§) hoo
+r e T Jo S ry(0)B,(e)e P qeh an (4.2

The divergence of the radiant flux vector is

-2kPlT%(ﬂ)*TK(§”

o n
I[n] = 2ry(n)B(n) - Eka k() {f ° ki (€)By(8)e de
C O

+r
W

-2k ) 2k (€)
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Here the monochromatic optical depth is

1
(n) = )a (4.4)
(1 fo K, (n)dn

It was seen in chapter III that an expansion of the governing
equations in terms of the smell parameter € led to a fortuitous
uncoupling of the energy and momentum equations. Unfortunately, the

same is not accomplished when the expansion is performed in terms

b

o) It

kP.
refs. 1 and 6) that the coupling is quite weak. Advantage can be

%k

taken of this situation by replacing 325(") = h(n) which appears

in the momentum eguation (2.71) with ﬁ, the integrated average of

h(n) over the interval (0, WA); that is,
- R
h = 1 J/\ h(n)dn (k.5)
a Yo

(This replacement is tantamount to solving the momentum equation by
the integral method with f(n) assumed to be a quadratic funation.)

This approximation has the twin virtues of retaining the coupling,

*
The solution to the momentum equation depends on the solution to
[}
the energy equation through the term a~ E?a(n) (see eq. (2.71)) where
2
a 1is order of magnitude X. An analysis of equation (2.71) indicates

that the contribution of this term to f(n) is order A/X. Since X
is very small (typically 0.06) the effect of the solution of the energy
equation to f(n) is order 0.25.
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albeit in approximate form, and greatly simplifying the solution to
the energy equation.

Now the soverning system of equations takes the approximate fora

£(n) n'(n) + €Ifn] = 0 (%.<)
28(n) £"(n) - [f'(q)]g +8°h=0 (4. 7)
£(0) = 0 (h.<)

(ny) -2 (1.2)

f.(%) - A — (4.10)

h(nA) =1 (b.11)

vhere I[ﬁ] is given by eauation (k.3). hen the Bouguer mumber is
very small, the absorption integrals in equation (4.3) assume a
secondary significance throughout the domain oi the problem. Neglect-
ing these absorption integrals reduces the system to purely differ-
ential form. If, as expected, when the Bouguer number kP is small,
the presence of absorption only slightly influences the sclution one
can, to reasonable accuracy, evalucte the absorption integrals using
the transparent solution for h. The perturbation expansion schene
used herein follows the general outline discussed above. Mathematical

details are presented in appendix C.
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The zero-order, or transparent, solution is

~l dh 2€T (1 - a¥)x + a*

J o = o Zn ()"12)
n F(P)B(R) e x
0 J
f (x)=(1- a*)x2 +a (L.13)
where
X = 'q/‘nA (h.1k)
o)

a¥ = axfho qao (%.15)

1+ \/gx(]_ - X) (1.10)

o 1 + \/eﬁo X(1 - X)

=
it

1l
o JC ho(X) dx (:.27)

It wvas shown in chapter II that the Planck mean mass absorption
coefficient normalized by its value immediately behind the shock can

be adequately represented by

KP(h) = (4.13)
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h* is the value of the enthalpy (depending on the pressure,

g8 v

1,
vhere 5
of course) at which the value of the exponent of h changes. ‘The

constant Cl is obtained by equating the two expressions for

KP(h) at h = h"

with the result

75=7
¢, = (n*)'2 "1 (%.19)
It was also shown in chapter II that the nondimensional Planck
function B(h) is approximately given by the expression
(o]
B(h) = 22 (L.20)

Yhen the correlation formulss (4.10) and (L.20) are introduced
into equation (%:.12) the integration on the left-hand side can be
carried out, and the solution for ho(x) given by the explicit

formula
1

[ 2€ (72 + 1.2)%0 (l - a*)x + a*‘\ 72+1.2
hO(X) =41+

* in /
\ . X ) (:.21a)

for h (x) > h*, and
o -

ho(x) ) \[(h*)-(72+1.2> ] (71 + 1.2 )Cl [_(11*)-(71+l.2)~ ]

72+ .2
L 1 (M.21b)

- a¥ a* |~ y1*L.2
26(71 + 1.2)01 0, . (L -2a")x+a \B 41 1

+

*
a X )

*
for ho(x) <h .
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The first-order solutions vhich include the effects of
absorption, surface reflectivity, and nongray rediation are

presented below

( j “AO by
ho(x) = ~2ex_ (x) B (x){q, + 1 -
1 Po © ) ﬁﬁ. ch
o
L
*
a” 1 )
- %o (1 -x) JA o (L -aT)x d*!
1 o+ ,vax(l - %)/ (l - a*)x + a* a¥ x r
i

=) rt \ 1 rl s (n)an l
+ (1 + rw)np (x)B_(x)n, J[‘ Jﬁ Ry (208, (p)as j .fmJ:hwu__?_kd%
0 o Yo _ 0 o 0 hO [Kf(h)g(h)Ji

where
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C. The P-L-K Solution

Careful inspection of the last term on the right-hand side of
equation (4.22) reveals that the first-order ternw hl(x) displays
a singular behavior near 7 = O (where hO approaches zero). By
way of illustration consider the case of a gray gas with KP(h) = h7

and B(h) = h“"°. In this case the term in question is proportional

to the quantity

1 coErE -
h7+2.2 dh ho h-(7+9-h) _ lj (4. 25)
o Y+ I = ., o J e
ho h Y + 5.4 - ..

Near the wall, ho approaches zero and equation (L.20) approaches

-102
O

y + 3.4

vhich increases withoul limit. This, seemingly, soumslous Looaviopr
can be explained as follows. The first-order solutisn represents a
gas which absorbs radiation at a rate determined .., tie= Al on
coefficient for a transparent gas* while it emita SHOTZY @l 0 sdi
proportional to the derivative with respect o ho of ihe emlssiogn

rate for a transparent gas. Both the abscipticn aud enissicn rates

% . e
The magnitude of the incident radiation is iimiepsden: . oo
amount absorbed.
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tend to zero as an element of gas approaches the wall. However, the
enission rate tends to zero rnuch more rapidly than the absorption
rate. The difference in the limiting behavior of these rates coupled
with the infinite residence time for an element of gas in the
stagnation region allows the gas element to absorb an infinite amount
of energy and so the enthalpy of the gas adjacent o the wall becomes
infinite.

The difficulty vhich has arisen as the result of ihe singularity
can be avoided through the use of the P-L-K perturbation of coordi-
nates procedure which transforms the coordinate irn such a vay thatl

he singulerity is removed from the houndary (at x = 0) to a point
outside the domain of the problem (a slightly nepgative value of x).
Mathematical details of the application of this methcd are described

in appendix C. The P-L-K solutions to first order in kP are

x =y +ipx (y) Geaif)

* Iz .

h(x;kP) = ho(y) Ui
£(x3i) = f:(y) + lcPfI(y) ¢

where the starred coefficients in the P-L-K exXpansions are related
to the unstarred coefficients in the regular perturiation €rpeniuivs

(see ref. L8)



*
h (y) =n (y) (k.30)
*( ) ( AT
£y) =1 v) (B.31)
"* * —
Il(y) = fl(y) + xl(y)fg(y) (k.32)
x:(y) = -hl(y),/.-c;(y) (h.33)

D. Results and Discussion

4

o s )
n order to obtain some

[

cally thin shock layer approximation, the results computed for a
typical case are compared in figure .1 with the results computed by
means of the small perturbation method of chapter II1 and the results
of a numerical calculation performed by Howe and Viegas (ref. 9). The
agreement among the three solutions is excellent. However, a word of

caution should be interjected here in order to aveid the implication
that the numerical results of Howe and Viegas represent the "exact"
colution to the inviscid, plane-parallel peometrv, stagcalion fluwv
model. The results of Howe and Viegas include viscosity, heat con-

ductivity, and body curvature. The effects of curvature are expected
to be quite small. The flight conditions (wm = 9.5 ¥m/sec,

ps = 10 atm) were chosen to insure that the boundary layer was very
thin so that "displacement" effects on the inviscid region vere
minimized. Finally, the thermodynamic and optical properties used

by Howe and Viegas were obtained from their own correlations while
the optically thin and small perturbation methods were compuated using
the correlations presented herein. Thus, the conparisons between the
results {rom the methods of this peper and the numerical results of

Howe and Viegas are as much, or more, checks on the validity of using
g 3 y
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W= 9.75 km/sec, Pg = 10 atm., Ry = 1.5256 m
4L
Optically thin
——— —— Small perturbation
o Numerical solution (ref. 9)
2k
0 2 4 .6 8 1.0
7/

Figure L4.1.~ Comparison of the optically thin and small perturbation
solutions with numerical results.
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the inviscid approach and checks on the similarity of two different
sets of correlations as they are checks on the accuracy of the ana-
lytical methods of this paper. It is not inconceivable that erors

due to the various factors mentioned tend to cancel in this example.
Nevertheless, the individual errors due to the omission or viscosity,
heat conductivity, and curvature and due to the difference in correle-
tion functions are expected to be quite small so that the excellent
agreement can still be interpreted as an indication of the accuracy
of the methods of this and the preceding chapter.

The approximate solution derived in the preceding sectious of
this chapter was used to study the effects of the radiation cooling
parameter, €, the Bouguer number kP, the surface reflectivity T
and the enthalpy dependence of the absorption coefficient on the shock
layer enthalpy distribution, the rate of radiant heat transfer to the
stagnation point, and the shock standoff distance. As in the previous
chapter, the density ratio X across the near normsal vortion of the
shock was fixed at a value of 0.06. 1In addition, all the resulis are
limited to the case of a gray gas.

The effect of absorption on the enthalpy distribution is
indicated by the curves of figure 4.2. 7The so0lid curves represent
the enthalpy distributions in transparent shock layer ror € = (.01,
1.0, and 100. The dashed curves represent the enthalpy distributions
in optically thin shock layers for the same values of the radiation
cooling parameter €. Values of the optical thicknesses src shown on
the figure. These results show the expected trend with the enthalpy
level falling as the radlation cooling parameter € increuscs.

Absorption tends to increase the enthalpy particuiarly in the cooler
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Figure L4.2.- Effect of absorption on the enthalpy distribution in an
optically thin shock layer.
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regicns of the flow. Absorption also affects the location of the shock
reducing the value of qﬁ (the location of the shock in terme of the
Dorodnitsyn coordinate) because of the decreased density level.
Although the value of QA decreases, the shocl standoff dictzive A
increases with increasing optical depth.

The effect of the enthalpy dependence of the absorption ccefficient
on the enthalpy distribution in transparent shock layers is shown in
figure .3. 1In part (a) the absorption coefficient was given by the
relation Ry = hy, wvhere 7 takes on the values 3, L4, and 5. The
value of 7 determines how the rate of energy emission varies with
enthalpy across the shock layer. The rate of energy loss by radiation
will decrease more rapidly as the enthalpy falls 1f 7 is large then
if it is small. Consequently, the enthalpy distritution for a large
value of 7 1lies above that for a smaller value. This, of course,
is the same trend exhibited by the small perturbstion solniions of
the previous chapter. In part (b) the abscrption coeffivicnt is
given by the relation Ky = ch’ where C = (n%)72'71» arid
Y =7, = b for h < h*, and C=1 and 7 = P A '
This model should be used when the shock layer t-upeiatuics e i
excess of about 20,0000 K since at moderate attitudes L {the
enthalpy at which the exponent 7 changes value) corresgunds to

temperatures of approximately this value. The eftects of /ooyt

Y

*
These values of 7 are typical for air at teaperaviics lebds

than sbout 20,000° K (see chapter II, section E ).
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(a) Effect of .

Figure 4.3.- Effect of the enthalpy dependence of the absorption
coefficient on the enthalpy distribution in an optically
thin shock layer.
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(b) Effect of h*.

Figure 4.3.- Concluded.
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* *
h are shown in figure 4.3b. A decrease in h produces a decrease

in the enthalpy level because 7 takes on the smaller value (-1)
throvhout a greater portion of the shock layer.

The effect of surface reflectivity r, on the enthalpy dis-
tribution is shown in figure L.4. Of course, this effect vanishes
in a transparent layer. With a small amount of absorption an increase
in reflectivity brings about an increase in enthalpy level with the
greatest increases occurring adjacent to the wall. These results
corroborate the findings of chapter III.

The variation with the radiastion cooling parumeter € of the
rate of radiant heat transfer to the wall for varicus values of the
Bouguer number 1s presented in figure L.5. Also shown on this figure
are two limit curves. One of these curves is labeled the "no decay
limit" and was computed by assuming that the shock layer was
isenthalpic and transparent. The second limit curve is labeled the
"available energy limit" because it represents an upperbound to the
radiant flux on the basis of energy balance. The amount of enccony
entering the shock layer per unit time per unit zr:za of the shook
surface has been normalized to unity. If all of Lhis eacigy is
radiated out of a transparent shock layer only one=-half will be
incident on the wall.

The curve labeled kp = 0 shows the effect of "decay" iu
reducing the rate of radiant heat transfer to the wall. The remainivg

curves indicate the important effect of absorption (as characterized
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Figure L.L.- Effect of surface reflectivity on the enthalpy distribution
in an optically thin shock layer.
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here by the Bouguer number kP) in reducing the rate of radiant heat
transfer to the wall. Although values of kp presented in figure L.5
are as large as 3, the corresponding shock layers are all optically
thin (kPTA <« 1).

The effect of the enthalpy dependence of the absorption coeffi-
cient on the rate of radiant heat transfer to the wall in a transparent
shock layer is shown in figure 4.6. It is apparent that an increase
in the exponent 7 (which appeers in the correlation formula KP = h7)
magnifies the effect of decay on the rate of radiant heat transfer.

The effect of the radiation cooling parameter € on the shock
standoff distance for various values of the Bouguer number kP and
7 1is shown in figures L.7(a) and 4.7(b). As expected, an increase
in € reduces the value of 2; (the ratio of shock standoff distances
with and without radiation) for given kP and ¥ Dbecause the
cooling by radiation tends to incresse the densily level In ths shool
layer. Incresses in kP and 7 for fixed € inhibilts the effect
of decay on Z. whereas these increases magnified the effectis of
decay on the rate of radient heat transfer.

The varietion of shock layer optical thickness with ihe

kIﬁA
radiation cooling parameter € and the Bouguer aumber kP is

shown in figure k.8. When the absorption coefficient varies as a
positive power of the enthalpy, the shock layer cptical thicknzs:

may be very much less than one even if the Bouguer number is order

of magnitude one or greater provided that € is gufficiently larse.
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The criterion for the validity of the analysis presented in this
chapter is that the optical depth of the shock layer be much smaller
than one for those wavelength regions in which a significant amount of
radiant energy is transported. It has been shown herein, for the
case of a gray gas for which the absorption coefficient is proportional
to a positive power of the enthalpy, that this condition is always
less restrictive than the condition that the Bouguer number, kP’ is
very much less than one. However, for the more realistic case of a
nongray gas the criterion stated above is generally more restrictive
than the condition kP << 1. In mathematical terms the criterion

implies the inequality

2(1 + rw)kP f

(o]

T [P B0 atyar 1 (1)
(o]}

The juantity on the left-hand side of the inequality is the {first-
order term in the expansion of I[ﬁ], the divergence of the radiant
flux vector, in terms of the Bouguer number, kP. When both K% and
BK are proportional to a positive power of the enthalpy an upper-
bound to the aforementioned quantity can be obtained by replacing
K%(ﬂ), Kk(é), and Bx(ﬁ) by their values at 1 = My immediately

behind the shock. The result is

2(] + rw)l«LP U Lm Ki('qA) B?\(nA)d}\ (4.35)
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If the same substitution is used for a gray gas the result is simply

21+ r )k (h.36)

because Kx(ﬁg) and k/;a,Bk(qA d\ are both identically egual to 1.
‘hen the nongray step function model for the absormtion soefficient
of air, which was used in chapter III (see fig. 3.10), is used to
evaluated the quantity (4.35) the result is about 60 times greater
than the corresponding gray quantity (4.36). Thus, the criterion for
the validity of the optically thin analysis, in this nongray example,

is
601<P<<1

for small values of the radiation cooling parameter e. For larger
values the criterion could probably be relaxed sometvhat (fnr example
60 kP fa << l). As a result of this criterion the practical
applicability of the optically thin analysis (and c:nsequently of

all transparent analyses) is seriously restricted.



CHAPTER V

THE OPTICALLY THICK SHOCK LAYER

A. The Optically Thick Approximation

A qualitative description of the optically thick shock layer has
been given by Goulard (ref. 5). He pointed out that this layer is
characterized by an isothermal reglon between two thin boundary layers
adjacent to the shock and the well. The boundary layer irmediately
behind the shock is a result of the cooling of the hot gas by radia-
tion through the transparent shock. Because radiation travels only a
short distance before belng absorbed in an optically thick layer, this
energy loss is restricted to a narrow reglon which extends approxi-
mately & photon mean free path. Once this initial adjustment in
energy has occurred the gas particle is carried into the interior of
the shock layer by the flow where convection is the dominant mode of
energy transport. In this region, the enthalpy of the gas is es-
sentially constant. As the particle nears the cold wall, moving ever
more slowly as it does so, convection becomes of decreasing importance
and energy transfer by radiation begins to assume the major role.
Finally, in the immediate vicinity of the wall all of the energy
transport proceeds by means of radiation. When the emissive power
in the interior (or isothermal portion) of the shock lsyer is larg:
the take-over by radiation occurs at greater distances from the wall

than if the emissive power is small. Thus, the thickness of the wall

134
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boundary layer depends not only on the optical thickness of the shock
layer but on the emissive power of the gas as well.

While the shock layer is optically thick, the boundary layer
behind the shock is not and so the Rosseland or diffusion approxi-
mation so commonly used in the study of optically thick gases cannot
be applied in this region. The Rosseland approximation is valid
only in regions of an opaque ges which are at great optical distances
from all radiation boundaries (a perfectly reflecting barrier is not
a radiation boundary) and in which the thermodynemic and optical
properties do not vary greatly within a photon mean free path.
Neither of these conditions are met in the shock boundary layer.

The conditions of validity for the Rosseland approximation
might hold throughout much of the wall boundary layer if the emissive
power of the gas is sufficiently large. However, the approximation
must break down optically close to the wall. 7The use of a tempera.-
ture jump toundary condition as suggested by several investigators
(refs. 25, 51, and 52) has proven successful in problems of radiant
and combined radiant and conductive energy transport. Whether or
not this concept can be applied with equal success to problems of
combined radiant and convective energy transport has not, as yet,
been demonstrated. In a region optically close to a radiation
boundary the temperature predicted through the use of the Rosseland
approximation and a slip boundary condition represents not the

temperature of the molecules of the gas, but a sort of average
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photon temperature. The convective heat flux depends on the
molecular temperature. Thus, it is not clear that the slip
boundary condition can be used in a problem of combined radiant
and convective energy transport. There is a basis for optimism
when considering the problem of this chapter, however, in that
the convective flux may be negligible compared to the radiant
flux optically close to the wall.

In order to arrive at a solution to the problem of the
optically thick shock layer, the substitute kernal approximation,
introduced in the previous chapter, will be used. It will be
shown that in the interior of the shock layer and close to the
wall, but not in the shock boundary layer, this method is equiva-
lent to using the Rosseland spproximation with £lip boundary
conditions. The use of this approximation will restrict the

analysis to gray gases.*

B. The Substitute Kernal Approximation
In this and the subsequent chapter, it will be convenient to
rewrite the energy equation (equation 2.70 of chepter II) with the

optical path length T as the independent variable, that is

£(7) n'(r) + eI[r] = 0 (5.1)

*This restriction is not a condition for zpplication of these
approximations, but has been invoked here to avoid the considersble
additional complication that relaxation of this restriction would
incur.
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Here, £ 1is the nondimensional stream function, h the nondimensional
enthalpy, and € the radiation cooling parameter. The divergence of

the radiant flux vector, I[T] is given by the expression

«.TA
I[v] = 5oy 1] = - 28(r) By (0) + K, f B(t) By (ip|7 - {)as

A
* % T, EQ(kP‘r) fo B(t) Ea(th) at (5.2)

where T 1is the nondimensional absorption coefficient, B the
nondimensional Planck black-body function, kP the Bouguer number,
r_ the reflectivity of the wall (at 7 =0), T, ‘the value of the
optical path length at the shock, and E1 and Eg the exponential
integral functions of first- and second-order, respectively.

In order to simplify the analysis the substitute kernal
approximation will be used. For the optically {hick shock layer,
the appropriate substitution for Ee(x) is found to be (3/4) e’(j/e)x.
This substifution satisfies the conditions that the areas under the
two functicns over the domain 0 X x S o ure equal ané that the
expression for the radiant flux approach the Rosseland expression
as x increases without limit.

If the expression for the radiation flux is differentiated
twice with respect to T the integral terms can be elimirsted

with the result
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1'(7] - 235 17] = - 2 B'() (5-3)

The energy equation (5.1) can then be used to eliminate I[T].
B 0 (1) - 22 £(r) ni(r) = 2 en(r) (5.1)

This alternate form of the energy equation is a third-order
nonlinear ordinary differential equation the solution of which must
satisfy the condition h(1l) = 1. Two additional constants of
integration are introduced by the solution of (5.@). These constants
are determined by satisfying appropriate physical conditions or by
satisfying the original integrodifferential equation (5.1).

An expression for the flux of radiant energy which enters the
wall can be obtained quite simply. The expression for the flux

incident on the wall is

_ 2 :
1-r & de

w

3 Ta g
ej B(t) e
o)
When the integrodifferential form of the energy equation (5.1)

is evaluated at T = 0, it becomes (since f(0) = O is a boundary

condition)

T
A -

B(O)-Ekp(l+rw)j B(t) e Pat=o0
(o]
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Thus the flux entering the wall can be written in terms of the value
of the black-body emissive power of the gas adjacent to the wall,
that is

] -
q§=GT;g%3w) (5.5)

W

C. Boundary Layer Analysis
In terms of the substitute kernal approximation, the complete
differential system governing the flow in the stagnation region of

a radiating shock layer is

[Frn ()" - 2 e B(m) - 242 £(n)nr (1) = o (5.6)
2£(n)£"(n) - (£7(n))% + 22 n(n) = 0 (5.7)

£(0) = 0 (5.8)

£(ny) =1 (5.9)

h(‘rA) =1 (5.11)

SN -2 t - TI
£f(r)h' (1) + e{g Ky / B(t)e 2 | “p dt

(5.12)

B(t)e

- /A

0

9
-gB(T)+B-kPrwe
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When the optical thickness of the shock layer is such that
k; >>1 and ki >> € equation (5.6) becomes asymptotic to the
equation
£{r)n'(r) = 0 (5.13)

Thus, the enthalpy approaches a constant. It can be shown by
attempting to satisfy equation (5.12) as a condition, that this
solution is valid only at large optical distances from both the
shock and the wall (unless it is a perfectly reflecting wall). It
also becomes clear that the value of this constant, hereafter
denoted hg, cannot be determined without knowledge of the shock
boundary layer.

If the enthalpy throughout most of the shock layer is constant
with a value h2, the density will be constant also with a value

In this case, the momentum equation may be easily sclved with

2
e p
£(n) = 1 - an, ‘/Eg (%) * a”A'1/5§ (73;) o)
s 8

A first approximation to the shock standoff distance is

02'

the result

(ps/p2)x h? %

= 1+ ,\/2(ps/p2)x(1 - X) ) 1+ ,\/211; X(1 - X)

(5.15)

A
R,
5
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In addition to the region of constant enthalpy in the interior
of the layer, there are two thermal boundary layers; one immediately
behind the shock and the other adjacent to the wall.

The forms that the energy equation assumes in these boundary
layers can be determined by means of conventional boundary layer

techniques. In the vicinity of the shock the "stretched" coordinate

t = (+A -7 kP) (5.16)

is introduced. Close to the shock the quantity f£(1) is slowly

varying and may be adequately represented by the first term in the

Taylor expansion sbout & = O, that is

£(e) = f(nA) =1 (5.17)

Substitution of equation (5.16) and equation (5.17) into the energy

equation (5.6) gives the shock boundary layer equation

€

kp

n"(eg) + -Z- B'(¢) - %—h(é) = Const (5.18)

Solution of this equation is complicated by the nonlinear term
(3/2) E; B'(€). If e is at least an order of magnitude less than
K, this term can be neglected and the solution to equation (5.18)

easily found. This solution is

h(t) = (1 - hz)e + by (5.19)

PO
uTe
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The constant h2 can be determined by writing an energy
balance across the shock boundary layer. This energy balance is
3¢ [ -5 .
1=h,+¢— B(¢&)e at (5.20)
kp
o}

When € << k; condition (5.20) reduces to

o] ¥ g

h2 ~]1 -

Kp

and it is apparent that h,. approaches one and the boundary layer

2
ceases to exist. Thus, there cannot be a shock boundary layer with
a thickness characterized solely by the optical path length in the
gas.

An approximate solution to the boundary layer equation (5.18)

5
can be obtained if the nonlinear term (3/2) E;-B'(E) is replaced

by an appropriate linear term, for example

[§+§h(§ﬂ -

where the constant B is arbitrary and represents a mean variation

NN

(8 ~ 3= Ba'(t)

“p

&=
oL

g =
of the black body emissive power B with h over the range of

values of h encountered in the shock boundary layer. The line-

arized version of equation (5.13) has the simple solution

-(Dlg
n(E) = (1 - hg)e + 1,

—~

\J!
N
=

~-
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where

. 2
AR *ﬁ* o[ 5) (5.22)

where e/kP 1s very much less than unity this solution reduces to
equation (5.20). When e/kP is very much larger than unity, the

solution takes the form

]

€
- & Bt
n(E) = (1 - hgje 270, h, (5.23)

and, in this limit, the thickness of the shock boundary layer is
determined by the parameter e-l instead of simply kgl. Thus,

the shock boundary layer can be very much thinner than a photon

mean free path if the black body radlative power behind the shock

is large. This effect was shown by Heaslet and Baldwin (ref. 31)

in their study of radiation resisted shock waves. Simply stated it
means that a particle starting immediately behind the shock loses
energy at such a rapid rate by means of radiation that it is
substantially cooled in the time that it takes to travel only a small
portion of a photon mean free path.

A value for the constant B can be obtained from the condition
2 _2°5 (1. -9 - -
(1 - he)wl 5k (1 h?_’)ml E(l he) =0 (5.24)

This condition was derived by integration of the nonlinear energy

equation (5.13) between the limits zero and infinity and substitution
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into the result of the linearized solution (5.21). In addition, the
correlation formula B = h5 was used. It was shown in chapter II
that © = 2.2. However, the ensuing analysis will be greatly simpli-
fied, without any significant loss in accuracy, by setting 5 = 2.

A second condition is required to uniquely determine the enthalpy
distribution in the shock layer. The energy balance relation (5.20)
evaluated with the aid of the linearized solution provides this
condition, which is
2 hg - Egz(l - h2 wi + 11+ 2h2 - E;E(l -h jjw, + 11 - Egg(l - h2) =0

2|1

(5.25)
The'quantity wl can be eliminated between the conditions (5.24)

and (5.25) resulting in an expression for h, the enthalpy level

2
in the interior of the shock layer, as a function of e/kP. The
result of this calculation is presented in figure 5.1.

The thickness of the shock boundsry layer (in terms of optical
path length) is characterized by the parameter lekp)"l. A plot

of wl as a function of g/kP is presented in figure 5.2.

As has been indicated previously, there is also a thermal
boundary layer due to radiation adjacent to the wall. If this boundary
layer is thin, which shall be assumed, herein, the dimensionless
streem function f(T) may be represented by the first few terms of

its McLaurin expansion
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£(r) = £(o) + 7£'(0)
Employing the kinematic boundary condition (5.8) and the asymptotic

solution for f(n) Equation (5.14) one finds

1 ol - - ra
= 4 * = bt (5.26)

an, _
K(O)ﬁ K(o)[ﬁe_ + ](Ex(l - X)]

Of the several approximations introduced in the analysis of this

f('r) =

chapter this i1s perhaps the poorest because the requirement that the
wall boundary layer be thin with respect to the optical path length T
does not necessarily imply that it is thin with respect to either the
Dorodnitsyn coordinate n or the geometric coordinate z.
Substituting this expression into the energy equation (5.6),

introducing the "stretched" coordinate

[o} . .
£ = q-kPl/ - {5.27)
. /2 . R
and neglecting terms of order kP yields the boundary layer eguation

\jl
~n
ro
N

S

oty + 3ot 1 |
B"(L) + g(-é—)bé hi(g) =0 (5.

In general, equation (5.28) is nonlinear and does not possess an
analytic solution. A simple approximate analytic soclution can be
obtained by replacing the quantity h'({) with hB'({), where h

is an as yet undetermined constant. This substitution reduces

equation (5.23) to the linearized form
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B"(¢) + 2o, £ B'(E) = 0 (5.29)

vhere

o, = g(k_})bﬁ (5.70)

The solution to equation {5.29) is easily found with the result

B({) =B + (132 - Bw)erf ({ag c) (5.31)

The quantities Bw, the nondimensional black body emissive power
of the gas adjacent to the wall, and wg (because it contains the
arbitrary constant ﬁ) are still unknown. One condition for evaluating
these quantities can be obtained by integrating the nonlinear boundary
layer equation (5.20) with respect to { between the limits zero and
infinity. In performing this integration, it is convenient to
eliminate the term B"({) in equation (5.28) with eguation (5.29).

Then it is found that

ﬁ - h2 B zw - 1 (5.30)
B2 ™ h2 * hw

Here B2 is the nondimensional black-body emissive power of the gas
in the interior of the shock layer and hv is the nondimensional
enthalpy of the gas adjacent to the wall. The last equality in

expression (5.32) holds because it has been assumed that B = h2.
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The second condition is obtained by evaluating the integral
condition (5.12) at T = 0. Written in terms of the boundary layer

coordinate { this condition becomes

| _3 1/
fien) [0 5% fu o

~ i ~/

=
I
o

Substitution of the linearized solution for B({) into equation (5.3%)

and integration yields

(1 + rw) e;?;; erfc ~9KP

l&n—g
By = \ IKE o B, (5.34)
12 .
(l - I') + (.1 + rw}v erfec j-@)_g.

Equations (5.30) and (5.32) can be used to eliminate w, from
equation (5.34) yielding a transcendental equation for the value of
the black body emissive power at the wall Bw-

The variation of BW as a function of the radiation cooling
parameter to Bouguer number ratio, e/kP for various values of kP
and the exponent 7 (from the correlation formula K = hy) is
shown in figure 5.3. This curve has particular significance because
the ratio of radiant heat transfer to the cold wall is directly
related to B through expression (5.5). The variation of the
quantity ®, (eq. (5.30) with these same parameters is presented

in figure 5.4.
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(b) e/k;P = 0.1.
Figure 5.4.- Continued.
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D. The Rosseland Approximation

The Rosseland or diffusion approximation is frequently used in
the study of problems in which the medium is optically thick. As
was pointed out earlier this approximation is not valid in regions
optically close to a radiation boundary or in regions in which the
optical and thermodynamic properties vary significantly within an
optical path length. Some investigators have attempted to correct
the former deficiency through the use of temperature Jump boundary
conditions and have achieved considerable success in problems of
pure radiant or combined radiant and conductive energy transport.

In this section, an attempt will be made to use the Rosseland
approximation and temperature jump boundary conditions to analyze
the optically thick shock layer. It is hoped that this exercise
will provide some insight into the attributes and limitations of
this approximation in problems of combined radiant and convective
energy transport.

With the Rosseland approximation for the divergence of the

radiant flux, the energy equation becomes

£(t)h'(7) = 0 (5.36)

k§
" 2 2
B"(T) + 5
This equation is the same as equation (5.6) except for the omission
1"
of the third-order differential term (£(v)n'(7)] .
In the interior of the optically thick shock layer, equation

(5.36) reduces to
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f('l')h' (T) =0

provided Ik, >> '1:; . This result is identical to the result obtained
by means of the substitute kernal approximation. This sgreement is
not surprising because the diffusion approximation is known to be
valid in this region. Of course, the value of the constant enthalpy
in the interior of the shock layer cannot be determined until some-
thing is known about the shock boundary layer.

If the usual type of boundary layer analysis is applied to the
energy equation in the Rosseland approximation (5.36) for the

neighborhood of the wall the result is

B'(0) + 3 (QKG—P-) b n'(¢) = 0

This equation is identicel to the wall boundary layer equation in
the substitute kernal analysis. Two boundary conditions are
required to completely determine the solution to this equation.

One of these conditions is

.1im B(¢) = B,
- 0

Here B2 is the black-body emissive power of the gas in the interior
of the shock layer. The second is the jump boundary condition,
written in terms of the black-body emissive power B rather than

the temperature.
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2
B = CB'(0) = %(-I;‘E)Cqs (5.37)

w

The second equality follows from the expression for the radiant flux
in the Rosseland approximation. The constant C is usually
evaluated by requiring the flux to be correct in the black-body limit
(see, for exemple, ref. 29). However, it is noted that condition
(5.37) is identical to the condition used in the substitute kernal

approximation (i.e. (5.33)) if C is chosen to be

1+
R (. (5.38)

Skp \1 - Ty

Thus, the results obtained in the wall boundary layer by the two
methods are identical if C is chosen to satisfy (5.38). It has
been shown that the two methods also give identical results when
applied to the problem of combined radiative and conductive energy
transport between two infinite parallel plates separated by a radi-
ating and conducting gas (ref. 29).

If the usual boundary layer analysis is used to obtain the
boundary layer form of the'energy equation in the Rosseland

approximation for the neighborhood of the shock the result is

B'(¢) - %’(2?) h(g) = Const (5.39)

This equation is not identiecal with the shock boundary layer equation

in the substitute kernal approximation because of the omission of the
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third-order differential term. Inspection of equation (5.39)
indicates that any solution other than the trivial solution
h(g) = h2 will not tend to a constant h, as § becomes very
large. Thus equation (5.39) cannot be forced to simultaneously

satisfy the conditions h(o) =1 and 1im h(t) = h

s o 2"
Apparently then the jump boundary condition at the shock must be
h(o) = h2, but this result leads nowhere as there is insufficient
information to accurately determine h2.

It must be concluded then that the Rosseland approximation
with slip boundary conditions is not sufficient by itself to be
used in the analysis of the complete shock layer. It can be used
in the combined radiation and conduction problem because the two
separate energy fluxes are represented by similar mathematical
models and may be treated as an equivalent radiation alone or
conduction alone problem. Even in this case, 1t is not possible
to obtain a temperature distribution nor to separately determine
the radiant and conductive fluxes optically close to a boundary.
In the combined radiation and comvection problem, this inability
to determine a temperature'distribution or to separate the radiant
and convective fluxes optically close to a boundary (such as a
transparent shock) where convection is important presents a

serious obstacle to solution because the convective flux depends

on the unknown temperature (or enthalpy) distribution.
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E. Results and Discussion

The analysis presented in this chapter applies only when the two
enthalpy boundary layers are thin compared to the shock standoff
distance with these distances expressed in terms of the Dorodnitsyn
variable 1. When e/kP, the ratio of the radiation cooling
parameter and the Bouguer number, is much less than one, the
thickness of the shock boundary layer is characterized by the inverse
of the Bouguer number, k;l, vhile when e/kP is large the shock
boundary layer thickness is characterized by the inverse of the
radiation cooling parameter, €'l. The thickness of the wall boundary
layer is characterized by the parameter (é/ki)l 2. Thus, the most
restrictive conditions on the applicability of the optically thick

1/2 for €

analysis are that kP >>]1 for € small and kP >> €
large.

Several enthalpy distributions were calculated with the formulas
developed in the preceding section. The results are presented in
figures 5.5a and 5.5b. The previous discussion of the effects of the
parameters on the thicknesses of the boundary layers is substantiated
by these results. The effect of the Bouguer number, kp, and the
radiation cooling parameter to Bouguer number ratio, e/kP on the
shock layer optical thickness kPiﬁ is also shown. The effect of
€/kP depends on the enthalpy variation of the absorption coefficient.

In the cases shown the absorption coefficient is proportional to the

fourth power of the enthalpy and an increase in e/kP brings sbout a
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Figure 5.5.- Effect of the parameters €/ k‘P and k.P on the enthalpy
distribution in an optically thick shock layer.
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reduction in the shock layer optical depth. The value of the
enthalpy of the gas adjacent to the wall (which is related to the
ratio of radiant heat transfer to the wall through equation (5.5)
and the correlation formula B = h2) decreases with increasing
e/kP and /or kP'

The effect of 7 (where 7 1is the exponent in the correlation
formula &k = h7) and the surface reflectivity r, on the character
of the wall boundary layer has not been shown but can be readily
deduced from the curves of figures 5.3 and 5.h4. Increasing 7 tends
to reduce the optical thickness of the wall boundary layer and
increase the value of the enthalpy of the gas adjacent to the wall.
It can be shown that the wall boundary layer thickness expressed in
terms of the Dorodnitsyn coordinate 1 is only slightly effected
by a change in 7. Increasing the surface reflectivity T, tends
to increase the optical thickness of the wall boundary layer and
increase the value of the enthalpy of the gas adjacent to the wall.
When expressed in terms of the Dorodnitsyn coordinate 1 the
boundary layer thickness decreases with increasing T . These
results are consistent with the results of Chapter 3.

The manner in which the rate of radiant heat transfer to the
wall, q&, depends on the radiation cooling parameter to Bouguer
number ratio, €/k?, the Bouguer number, k,, the variation with
enthalpy of the absorption coefficient (through the exponent 7 of
the correlation formula k = h7), and the surface reflectivity, T

is indicated in figures 5.3a to 5.3b. For fixed values of kP’ 7>
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and r, the rate of radiant heat transfer to the wall, qz »
increases with increasing e/kP. It appears that qs would
become asymptotic to the available energy limit of 1/2 as

e/kP increased without limit. As the Bouguer number, kP’
increases (hence increasing the shock layer optical thickness),
all other parameters remaining fixed, the value of qz decreases
and becomes asymptotic to zero. This is the same trend exhibited
in the problem of radiant energy transfer between two plane
parallel walls separated by an absorbing and emitting, but
motionless and nonheat conducting gas (see, for example, ref. 11).
Increasing 7 while holding the other parameters fixed results
in an increase in qﬁ. This trend 1s the reverse of that for a
transparent shock layer (see fig. 4.6). The results of Chapter 3
(see fig. 3.6) show that this reversal occurs at intermediate
values of the Bouguer number kP. Finally, it is apparent from
figure 5.3 that an increase in surface reflectivity r, for fixed
values of the other parameters results in a decrease in qs. The

change in qs with rw satisfies the inequality

q?’?'(l-r“) (qs)rw=o

which agrees with the physical argument presented in section 4 of

chapter III.



CHAPTER VI

THE RADIATION DEPLETED SHOCK LAYER

A. The Strong Radiation Approximation

When the radiation cooling parameter € 1is very much greater

leaving the shock with an initisl enthelpy of % Wi will emit
radiation at such a rapid rate that it will lose a significant
amount of its energy before traveling the distance of a photon mean
free path. Because this energy is emitted in a region of small
optical thickness adjacent to the transparent shock most of it will
escape from the shock layer, and the enthalpy level within the shock
layer will be quite small in comparison to the value at the shock.
In fact, as will be shown subsequently, the zero-order solution for
the enthalpy in the interior of the shock layer is identically zero.

It is for this reason that the term "

radiation depleted shock layer"
has been coined. Of course, the narrow region adjacent to the shock
in which the large change in enthalpy occurs can be described as a

boundary layer and boundary leyer techniques can be applied to obtein

solutions in it.

The conditions which must hold in order that there be a radiation

2
depleted shock layer, that is € very large and kP not too large,

occur at high altitudes for rather large objects (shock radius greater

than 1 meter) entering at extremely high speeds (entry speeds close
to 70 km sec). It is not at all clear that the requirement for

167
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chemical equilibrium can be satisfied under these condition, particu-
larly in view of the existance of a shock boundary layer in which
large changes occur over a short distance, and hence, a short time.
Dispite this objection, the solutions for the radiastion depleted shock
layer represent an interesting limiting case which should lead to an
increased understanding of the radiating shock layer and provide a

firm base for extension into areas of more practical concern.

B. Anslysis
Once again, as was the case for the optically thin and optically
thick shock layers, snalysis can be facilitated through the use of
the substitute kernal approximation. In this case, the énergy equation,

written in terms of the optical path length, is

[on(n)] -2 er(n) - 2 e(rnr(r) =0 (6.1)

Here f 1s the nondimensional stream function, h the nondimensional
enthalpy, B the nondimensional black-body emissive power, € the
radiation cooling parameter, kP the Bouguer number, and 7T the
optical path length. It shoﬁld be remembered that use cf this equation
restricts the analysis to gray gases only. The boundary conditions on

the enthalpy are, as before

h(QQ =1 (6.2)

and the integral condition
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The particular form of the substitute kernal emplcyed here

S

t
PO
o

=

c (1) ~

hnd
I '
<

e » Was chosen for simplicity. Scmewhat greater

o

accuracy might be achieved by lettins “he constants depend on the
nptical depth thA' However, it was not felt that this procedure
would lead to a better understandin- of the radisation depleted shock
layer.

The momentum equation, in terms of the Dorodniteyn coordinate,

and the boundary conditions on the nondimensionsl stream function

are
2e(n)2"(n) - ['(n)] +e®n =0 6.1)
£(0) = 0 (6.5)
f(nA) =1 (6.6)
2 [ A a
(o) o2(L). & 6.
* (nA) x\r | AEXT - %) (67
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Vhen the radiation cooling parameter € 1is very much greater
[}
than one and k; the energy equation (6.1) admits the asymptotic
solution
B(7) = Cl + 02 T (€.0)

Substitution into the asymptotic form of the integral condition
(6.3) reveals that each of the two constants must be identically zero.
Thus, in the interior of the shock layer B(r) o2nd h(7) are zerc.
In this case, the density is infinite and the momentum equation can

te readily solved for £(n) with the result

\2
£(n) = (-,-?Z) (6.9)

and, of course, the shock standoff distance tends to zero.
In order to investigate the shock boundary layer, it is

S v

convenient to introduce the "stretched" coordinates

[Ta
1}

(TA . T)En (6.10)

and

¢ = (T]A - q) e (6.11)
into the energy and momentum equations, respectively. Performing
the usual manipulations (details are presented in appendix D) shows
that the boundary layer is characterized by the parameter e-l and
it would seem proper to expand both the boundary layer and asymptotic

solutions in power series of this small parameter. However, fa(q)
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(where the subscript a indicates the asymptotic solution valid far
from the shock) is not analytic in e-l near e"l = 0, but is
R -1 .
analytic in € /2. Consequently, the solutions must be expanded
e i o"1/2
as power series in ¢ .

The lowest-order form of the energy equation in the boundary

layer is
dh

de

O,

! .3_ £} = :
B bo(ﬁ) * 5 Bbo(>) =C *+C, & (6.12)

1

The subscript bo has been used to denote the zero-order boundary
layer solutions. This equation must satisfy the boundary conditions
that both B (¢) and Bg (¢) vanishes as £ increases without
limit. Thus,othe constant: Cl and Cg are both identically zero.
The third condition to be satisfied is

B, (0) =1 (6.13)

o

The solution to equation (6.12) subject to the boundary conditions is

1
Jg (%%) £ (6.14)

b
o

e
i
LS N3V}

Solution of the momentum equation in the boundary layer gives

the zero-order form of the nondimensional stream function

£, (8 =1 (6.15)
(o]



of hisher order.

172

These zero-order solutions can be used to generate solutions

Mathematical details are presented in appendix D.

In seneral, the analysis follows the procedure cutlined by Van Dyke

{ref.

paraneter e

"_wi'."‘) .

A complete listing of these solutions up to second-order in the

-1/2 is presented belov.

Zero=order solutions.-

BaO(T) =0
" \2
o

-5, (8%

£(0) =1
O

J2Nexa =% 221 = %)

Wﬁ a
o
LN
- o}
Ab K;l(O)
First-order solutions.-
B, (tr) =0

1

(6.16)

{(6.17)

(6.20)

(6.21)
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fal(n) = o, /B(O)Bag(o) (ﬁ—)[ - (ﬁ—)} (6.25)

(¢) =0 (6.24)
Bbl

W, = z an, q/1&(0)13%(0) (6.26)
o
)

Second=-order solutions.=-

k‘P(l ¥ rw)E + 3 TJ

B, (1) = - (6.25)

5 ;
2 2[1 + h-(l - rw)lT TAo]

(6.29)
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’.\’hel‘e
m\ \2
. 1
A —| k. T
QA P Ab
o)
/nu \2r )
- —x 3 . - <z
0 Ab 0 o]
nAz "Izl(o):l 3
153 - K-l(O) * N —_ll 2 Bah(o) 1+ TN
& P (o] E‘ (O)] ped (S
P
(6.31)
12 -1 .
e-er+e TA1+TA2 Ko (Bbo(b))
+ f ) - 1ld¢g
o k_(0) '

Radiant heat-flux and standoff distance.- The total radiant heat

flux to the wall qS and the ratio of the shock standoff distance to
the shock standoff distance for radistionless flow Z: are given by

the following expressions.

R
& 1 (6.32)
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(6.23)

J

C. Results and Discussion
In the analysis of the preceeding section, it was convenient to
use the blacii-body emissive power B rather than the enthalpy h as
the dependent variable. This choice necessitated the assumption that

-1
p)

be analytic functions of B in the interval (0,1). Unfortunately,

the thermodynamic and optical properties (in particular h and =

this condition does not hold for the correlations of chapter II
vritten in terms of B in the limit as B approaches zero. This
difficulty can be circumvented through the use of analytic approxi-
mations to the correlating functions. For example, the enthalpy

might be approximated by the function

B = (B+ )2 (6.34)
where B* 4g g very small positive number. Use of formula (6.34) in

expression (6.18) results in the following solution for B, (&)
)

2
(o] ‘_1-Ce-5,{3_*§

-1 (6.35)




176

vhere

* * '
C: Vl+B -VB (6‘56)

e > 1/3¢5%

*
the value of B (&) is directly proportionsl to B. It is clear
* © ’
then that B  should be chosen sufficiently small to insure that

.X.
Bb (¢) is nearly independent of B for values of Bb as small as
o o)
1B (0).
&2

Because of the unlikelihood of establishing local thermodynamic
and chemical equilibrium in a physical shock layer under those
conditions for which this model analysis is supposed to apply, it
would be somewhat superfluous to present the results of detailed
calculations for the enthalpy distribution and shock standoff
distance. Suffice it to say that the shock layer is characterized
by an enthalpy boundary layér immediately behind the shock the
thickness of which (in terms of the Dorodnitsyn variable 1n) is
characterized by the inverse of the radiation cooling parameter e-l.
It should also be pointed out that the shock boundary layer is always
very much less than a photon mean free path and hence is always

optically thin. The enthalpy level in the interior of the shock

layer is order of megnitude kP/ . The ratio of the shock standoff
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distance to the shock standoff distance for radiationless flow is
order of magnitude L.

Curves representing the magnitude of the radiant heat flux which
is absorbed by the wall qg are presented in figure 6.1. In the

ovrtically thin limit (kP A << l) the radiant heet flux approaches

\ P4

the "available energy limit" of Cl -1%3/2. As the optical thickness
of the wall increases and absorption becomes more important, less of
the energy emitted from the gas in the shock boundary layer in the
direction of the wall is able to penetrate the shock leyer and reach
the wall before being absorbed. Part of what is absorbed is then
reradiated in the forward direction and escapes from the shock layer
through the transparent shock. Finally, as kP TA tends to infinity
none of the energy emitted in the shock boundary lZyer reaches the

wall and the radiant flux incident on the wall vanishes.
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CHAPTER VII

RADIATING SHOCK LAYERS

A. Discussion of the Approximate Solutions

Four different approximate stagnation point solutions for an
inviscid, radiating shoeck layer were obtained in rreceding chapters.
Each one represents a limiting case for some combination of the
radiation cooling parameter e and the Bouguer number kP. The
regions of validity of the approximete solutions are depicted in
figure 7.1. The boundaries as drawn pertain only to a gray gas
with constant absorption coefficient. It would be necessary to redraw
the boundaries for each nongray gas and for every changebin the
enthalpy dependence of the absorption coefficient. As was pointed
out in chapter IV, the criterion for validity of the optically thin
solution is that the gas layer be optically thin in all wavelength
intervals in which a significant amount of energy is transported by
radiation. For a gray gas, this means kPﬁA << 1. Thus, the
boundary is not specified completely by kP but varies with ¢ as
well (since kPiﬁ’ the shock layer optical thickness depends on ¢
as well as kP when the absorption coefficient is a function of the
enthalpy). When applied to a nongray gas, the criterion for
validity of the optically thin solution is always more restrictive
than the condition that the Planck mean optical depth be small. Thus,
the boundaries for all nongray gases will be displaced to the left
of the boundary for the "Planck-equivalent" gray gas. A "Planck-
equivalent”" gray gas is one in which the wavelength independent

179



108 r . . \‘ /\\ \,\~ \ ,
!
¢

10

180

Y 5"\,; " Radiation depleted ™ .-
s e N N shock layer 7

’

-_Optically thick
. approximation -
\ -

\ Optically thin \
~ approximation

Figure 7.1.- Radiating shock layer regimes.
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absorption coefficient is equal to the Planck mean absorption
coefficient in the nongray gas.

The location of the boundary for the small perturbation
approximation depends on the radiation cooling parameter € and
the enthalpy voriation of the absorption coefficient. The value
of € for vhich the solution will yield results of a given accu-
racy is reduced with an increase in 7 (where 7 1is the exponent
in the correlation formula kp = hy), because oI the reduced

accuracy of the truncated expansion for k., (equation (B-43) of

P
appendix B). Since the small perturbation solution was shown to
be correct to second-order throughout most of the domain of the

2 «< 1.%

problem the condition for establishing the boundary is €
The location of the boundary does not depend on the wavelength
dependence of the absorption coefficient.

The most restrictive condition limiting the validity of the
optically thick analysis for moderate values of the radiation
cooling parameter € is the thickness of the enthalpy layer
adjacent to the shock. This thickness is characterized by the
inverse of the Bouguer number l/kP. Thus, the criterion for
validity is kP >> 1, For larger values of € the condition
(%/kg)lle << 1 Dbecomes more restrictive and must be used to

establish the boundary. This latter condition insures that the

enthalpy boundary layer adjacent to the wall is thin compared to

*This condition holds when 7 = O. When 7 = 4 the proper
condition becomes 10 €2 << 1, :
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the shock standoff distance. The analysis presented in chapter V
is restricted to the case of a gray gas but could be extended
rather simply to the case of an absorption coefficient with a step
function dependence on wavelength for which the step heights are
either af(h) KP(h) or zero. There is no restriction to the
number of width of the steps. The only changes that would appear
in the formulas would be the substitution of a(h) nP(h) for KP(h)
and B(h)/a(h) for B(h). The boundary to the region of validity
of the optically thick shock layer analysis would be displaced to
the left for this particuler class of nongray gases.

The region of validity of the radiation depleted shock layer
analysis is restricted by the conditions € > 1 and € > kg.
The first condition insures that the thickness of the enthalpy
boundary layer adjacent to the shock is small compared to the shock
standoff distance, while the second condition insures that radiation
is the preponderant mode of energy transport within the shock layer.
Like the analysis of chapter V, the radiation depleted shock layer
analysis is restricted to gray gases but can be extended to the
nongray model absorption coefficient with multiple steps of uniform
height. Use of such a nongray model would cause a leftward shift
in the boundaries to the region of validity. Of course, the regions
of validity of both the optically thick and radiation depleted shock
layer analyses must vanish for all other classes of nongray gases.

In order to relate the radiation shock-layer regimes to the

problem of entry into the atmosphere of the earth, several
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trajectories are indicated on the € - kP map presented in

figure 7.2. The arrows indicate the direction of increasing time.
Trajectories 1 and 2 represent iron spheres of radius 1 meter and
1 centimeter, respectively, entering vertically with an initial
velocity of 70 km/sec.* Trajectories for all other objects of

the same size and lesser or equal initial velocities must lie below
them in the € - kP space. The third trajectory corresponds to
the entry of a round-trip Martian probe which would encounter some
of the more severe heating conditions of the currently envisioned
class of manmade objects. It is apparent that the small pertur-
bation approximation has considerable utility for the analysis of
radiation effects on the entry of manmade objects. It also appears
that the optically thin shock layer analysis might enjoy wide
applicabllity. However, in the more realistic case of a nongray
gas the boundary would be shifted to the left one or two orders of
magnitude in the Bouguer number kP, considerably reducing the
practical usefulness of the optically thin approximation. The
optically thick and radiation depleted shock layer analysis would
seem to be nearly devoid of direct practical usefulness, both
because of the inacessibility of the proper magnitudes of the
parameters € and kP to objects of interest and because of the

restriction of these analyses to the gray case (and the simple

*No account has been taken of mass loss of these spheres due
to ablation.
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1. Iron sphere-vertical entry at 70 km/sec, Rs =1m

2. Iron sphere-vertical entry at 70 km/sec, Rg=.01m
3. Mars probe-shallow entry at 15 km/sec, Rg=1m

Figure T7.2.- Entry trajectories in the e—kP space.
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nongray model absorption coefficient with multiple steps of

uniform height).

B. A Model Earth Entry Environment

The four approximate solutions can be used to compute the
radiant heat transfer to the stagnation point over a wide range
of the radiation cooling parameter € and the Bouguer number kP.
The results depend on the particular gas, the surface reflectivity,
and the size of the object and must be recomputed for every change
in these variables. Actually, the size of the object is important
only if the exponent 7> (which appears in the correlation formula
Kp = h7) varies throughout the € - kP space. In this event, the
value of h at which a change in 7 occurs depends on the para-
meter kP = psKPéAA which is influenced by the body size through
the radiationless shock standoff distance AA‘

Contours of constant values of TS (the temperature immedi-

ately behind the shock), (The Planck mean volume absorption

psKPs
coefficient immediucely behind the shock), € [kp, and X (the ratio
of free-stream density to the density immediately behind the shock)
on plots of ambient density ratio pw/pSL versus free-stream
velocity W_ up to 70 km/sec are presented in figures T7.3a through
T.3d, for a model earth entry environment. This entry environment
was obtained by combining the thermodynamic and optical property

correlations presented in chapter II, section E with the strong

normal shock relations. The resulting formulas are:
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for the lower temperatures (less than about 20,0000 K) and
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(7.4p)
for the higher temperatures.
The values of X and 7 (the exponent in the correlation
formula Kp = h7) do not vary greatly over a rather extensive range
of ambient densities and velocities. Consequently, it was decided

to fix these quantities at the constant values, X = 0.06 and

7 = 4.0, for the discussions which follow.

o)
1 P N\0.507 =1 Feo i
2 Ky = 9.33 x 102 (% 1 ___;) T " 0.39 + 0.21 Loglo (% -——{)Jcm 1
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C. Radiant Heat Transfer

The rate of radiant heat transfer to the stagnation point of 3
blunt object. qi. was calculated by the four approximate methods
for a wide range of the radiation cooling pararneter € and the
Bouguer number kP. The results are presented in figure 7.4t as a
plot of qﬁ against kP for various values of the ratio €/kP.

This ratio, sometimes known as the inverse of the Boltzmann number,
was used because 1t is what might be termed an "environmental
parameter,” that is a parameter dependent only on free-stream
conditions {ombient density and velocity) and not on body geometry.
The Bouguer number kP, on the other hand, is directly proportional
to the body nose radius for a given set of free-stream conditions.
Thus, each curve in figure 7.4t can be thought of as representing the
effect of body nose radius on radiant heat transfer at a given
trajectory point.

For the purpose of calculating the results presented in figure
7.4k, the shock layer gas was assumed to have a gray mass absorption
coefficient which varies as the fourth power of the enthalpy. The
surface of the object was considered to be nonreflecting. The dashed
vortions of the curves do not represent computed data, but rather
represent arbitrary connections across regions in which the various
approximate solutions are invalid.

The radiation cooling parameter € is equal to the radiant flux
leaving each side of a transparent, isenthalpic gas slab in which the

nondimensional enthalpy takes the value one. Hence, this product
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represents an upperbound to the rate of radiant heat transfer to the
stagnation point (or wall), qﬁ. When this product is small, the rate
of energy loss through radiation is small, and the average intensity
is only slightly perturbed from the isenthalpic value. However, as
€ increases(the Bouguer number kP remaining very much less than
one) the increased energy lost by radiation is reflected in
decreased levels of enthalny and average intensity. Hence, qs
becomes a decreasing fraction of €. Finally, as € Dbecomes very
large, (kP still small) nearly all of the energy is removed from
the shock layer by radiation and qs which represents the rate at
which radiant energy leaves one side of the transparent layer,
approaches the physicel maximum of 1/2.

As kP increases toward and beyond unity, absorption becomes
important and this mechanism, vhich tends to inhibit radiant energy
transfer, halts the increasing trend of qs with kP. As kP
continues to increase, the trend is reversed and qi decreases and
becomes asymptotic to zero. Consequently, the curves of rate of
radiant heat transfer to the stagnation point qi against Bouguer
number kP for constant values of the ratio €/kP have maximums
the locations and heights of which depend on €/kP. It can be
inferred from this that for every altitude and velocity in this
simple model atmosphere, there is a finite value of ncse radius for
which the rate of radiant heat transfer to the stagnation point will

be a maximum.



In order to obtain some understanding of the effects of
radiation cooling, gray absorption, and spectral absorption of the
rate of radiant heat transfer to the stagnatiocn voint a series of
calculations utilizing various approximations were performed. The
results of these czleculations corresponding to a free-strezn velocity
of 14.2 km/sec and an altitude of 32.4 km are plotted against body
nose radius RN in meters in figure 7.5. The curve labeled 1 was
computed by assuming that the shock layer was both isenthzalpic and
nonabsorbing. 1In this case the rate of radiant heat transfer to
the stagnation point is given by the simple expression, qs = €,

This cpproximation was used in the early estimates of radiant heating
(refs. 1 and 2). Curve number 2 wos computed by assuming that the
shock layer was isenthalpic and contained a gray, absorbing gas. The
cffect of gray absorption is seen to be small (under the conditions
of this example) for a nose radius as large as 0.1 m. The third
curve was cbtained using the transparent approximation discussed in
chapter IV. This cssumption of a nonabsorbing but radiation cooled
shock layer is frequently employed in the literature (see, for
example, refs. 3-7). For this example, at least, the effect of
adiation cooling is more important then the effect of gray absorption
for nose radii of 0.1 m or less. Curve number 4 contains the effects
of both radiation cooling and gray absorption. These combined effects
are included in the numerical solutions of Howe and Veigas (ref. 9).
It cen be seen that for smell nose radii (less than about 0.1 m) gray

absorption has little effect. However, gray absorption plays an
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increasingly important role as the radius inereoses. The final curve,

numbered 5, includes the combined effects of radiation cooling and
nongray absorption. The absorption coefficient used in these
caleulations was the step function model introduced in chapter III

(see fig. %.10). The curve is limited to smali values of nose r

because of the restricted region of validity of the small perturbation

method with which this curve vas computed. 7Tt is very apparent from
these results that nongray effects cannot be igaored if one wishes to
oktain a realistic evaluation of the radiant heating of objects
during entry at hyperbolic velocities.

The analysis of this paper has been restricted to a shock layer
with plane-parallel geometry. The largest effect of this assumption
is felt in the calculation of the rate of radiant heat transfer.

Koh (ref. 19) has shown that the plane-parallel geometry assumption
czn lead to an overestimation of qi by no more tihan l1l5-percent
when the gas is transparent to its own radiation and when the shock
standoff distance to shock radius ratio is no greater than 0.05. As
the Bouguer number kP increases, the size of the error decreases
and vanishes when the shock layer becomes optically thick. Because
the effective optical thickness of a nongray shock layer is greatér
than that for a Planck equivalent gray gas, the error due to
geometry will be smaller for a given Bouguer number in the more real-

istic nongray case.
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D. Convective Heat Transfer

Even though the analysis of this investigation is based on the
assumption that the gas in the shock layer is inviscid and nonheat
conducting, it is possible to draw some conclusions regarding the
coupling between radiant heat transfer ond convection heating. The
convective heating rate (sometimes referred Lo os the aerodynanic
heating rate) is, in the case of 2 laminar boundary layer, the rate
at vhich heat energy is transferred to the body surface by means of
conduction.

To first order in the boundary layer noran:ter Pe-l/z* (see
section D of chapter II) the convective heating rate is proportional
to the enthalpy difference across the conduction boundary layer.

If the wall is cold (as has been assumed throuchout this investi-
eation the enthalpy of the wall can be neglected <nd the convective
tonting rate becomes proportional to the enthalp nt the ocuter

edge of the boundary layer. The location of the outer edge depends
npon the Peclét number. Since it has been assumed throughout this
investigation that the viscous boundary layer is thin (in terms of
both the Dorodnitsyn coordinate and the optical path length) the
location of the edge of the viscous boundary layer will be arbi-
tratily specified as n/n‘A = 0.05 for both the small perturbation
and the transparent solutions. The rapid change in enthalpy near

the wall, particularly for the transparent approximation which

* ,
The inverse square root of the Peclet numter.
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gives a volue of zero for the enthalpy of the gas adjacent to the
wall, necessitates choosing an edge location other than zero. For
the optically thick and radiation depleted shock layers, it is
more convenient to specify the edge of the viscous boundary layer
in terms of the normalized optical path length T. The variation
of enthalpy near the wall is quite small in the case of the
radiation depleted shock layer. Consequently, the edge o.” the
viscous boundary layer can be considered to be located at T = O
for this case. A wall boundary layer due to radiation has been
shown to exist in the optically thick shock layer. This wall
boundary layer is always thicker than a photo mean free path, and,
of course, is very much thicker than the optically thin viscous
boundary layer. Therefore, T = O can be considered as the edge of
the viscous boundary layer for this case also. Values of the
enthalpy he at the edge of the viscous boundary layer have been
determined from the four approximate solutions for a wide range of
the ratio of the radiation cooling parameter to the Bouguer number
€/kP and the Bouguer number kP. The results are shown in figure
T.6. The dashed portions of the curves represent arbitrary
connections across regions of nonvalidity.

The quantity he is a rough approximation to the ratio of the

convective heating rate for a radiating shock layer to that for =

nonradiating shock layer. When radiant energy transport is important,

the convective heating is reduced from the radiationless value

(he = 1). The effect becomes larger as both €/kP increase. It is
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Interesting to note than the convective heating continues to decrease
for increasing kP even vhen the shock layer is optiecally thick and
the rate of radiant heat transfer is decreasing ac a resuvlt of ab-
sorption. Even though the total heating rate (radiant plus convec-

tive) cannol be dedrced from an inviscid analysis, it is apparent

o

hat *he to*al heating rate decreases with increasing shock layer
cptical thickness for all values of kP at least as large as the

- R

value for paximum ratc of radiant heat transfer to the stagnation

roint qﬁ.
0f couvrse, the resulte of figure 7.6 only ~ive an order~-of-
magnitade estimate of the radiation-convection heating counling.
Wot ineluded are the offects of variable transport nroverties,
enthalpy grrdient at the edge of the bhoundary layer, and differences
in the charzcteristic Reynolds and Prandtl numbers between the
radiating and nonradiating cases. 1s0 no account has been taken
of the effect of radiation in the boundary laysr. In the cooled
region of the boundary Jlayer adjacent to the wall the gas will
absorb more radiant energy than it will emit. This will tend to
increase the slope of the enthalpy distribution adjacent to the wall
thereby increasing the convective heat trensfer somewhat.

The effects of radiation cooling, gray absorption, and spectral
absorption on the ratio of convective heating rate for a radiating
snock layer to that for a nonradiating shock layer, he’ is shown in
figere 7.7. It is apparent that radiation cooling plays the major

role vhile absorption (both gray snd nongray) tends to reduce the



‘WY t*gg = *3TB ‘o9s/unf gonl = M +o7BI BuryieLy
3ATL09AUOD qupod-uoTivudels 9Y3 UO SNIPBI 3sOU Lpoq JO 1093J3 9YL =°)°) o9InF1d

201

. o N

NOH Hoﬁ ooH H-OH m-m.uﬁ m-o%
/ uonyewIxoxdde jusiedsurL ], 1¢
4 w
uonrwWoIdde ABiD
2
5§
- @.
AexbHuoN
- m.
xoadde o1d1euyjussy
AN 0T




202

effectiveness of radiation cooling. The calculations for curves
1l and 2 ignored cooling. Consequently, no reduction in the cal-
culated value of the convective heating rate was obtained. Curve
5 includes radiation cooling and ignores absorption. Thus the
reduction in the calculated value of the convective heating rate
is maximized in this approximation. Finally curves 4 and 5
indicate that absorption inhibits the effectiveness of radiation
cooling, and since absorption is more important in a nongray gas
than it is in a Planck equivalent gray gas the rate of convective

heating will be greater in the nongray case.

E. The Role of the Radiation Cooling
Parameter and the Bouguer Number
The radiation cooling parameter € admits of several physical
interpretations which are useful in the understanding of the radi-

ating shock layer. Of these, one of the most useful is the

following:
time required by element of
rate of emission from volume to traverse distance
element of volume of gas A, at rate of emergence from
c emerging from shock shock

2 (energy of element of volume upon emergence from shock)

Here Ah is the shock standoff distance in a nonradiating (or
adiabatic) flow.
It can be seen from this interpretation that the radiation

cooling parameter is indicative of the slope of the enthalpy
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distribution immediately behind the shock. In fact, in the trans-
parent limit there is a direct relation between € and the initial

slope. That is,
dh/d(n/nA) = 2€

(see, for example, chapter IV, figure 4.2)

In the case of an optically thick shock layer, the initial
enthalpy gradient is reduced by absorption. However, a lower bound
to the gradient is the value € (one-half the transparent value)
because the emergent elemetary volume will emit at least twice as
much energy as it absorﬁs; it emits energy at a rate proportional
to the Planck function at the equilibrium shock temperature, Ts’
in both the upstream and downstream directions while it absorbs
energy at a rate at most proportional (by the same factor; the
monochromatic volume absorption coefficient) to the Planck function
at temperature Ts from only the downstream side.

A physical interpretation of the Bouguer number is given below:

(rediationless shock standoff distance, )

kP = (Planck average photon mean free path in gas emerging
from shock

Only when conditions do not vary greatly across the shock layer will
the Bouguer number be indicative of the Planck mean optical thickness
and only when the gas is nearly gray will the Planck mean optical
thickness be indicative of the various important monochromatic

optical thicknesses. Consequently, critical values of the Bouguer
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number are subject to a number of influences; among them, the
enthalpy and spectral variation of the absorption coefficient and
the value of the radiation cooling parameter. For example, the
value of kP for which absorption first becomes important is

about 0.1, vwhen the radiation cooling parameter is very much less
than one and the absorption coefficient is independent of wave-
length. When the absorption coefficient varles spectrally as

shown in figure 3.10, chapter III, and when € 1is very small,
absorption begins to become important for Bouguer numbers as small
as 0.001. With € about 10 for a gray gas absorption is important
for values of the Bouguer number greater than about three. Dispite
these drawbacks, the Bouguer number as defined in this investigation
is about the best a priori indicator of the importance of absorption
that can be obtained.

When the radiation cooling parameter € is very much less than
one, an elementary volume of gas will lose very little of its energy
by radiant emission in the time required to traverse most of the
shock layer (of course, it takes an elementary volume of gas
travelling along the stagnation streamline an infinite time to
reach the wall). Hence, radiation cooling of the shock layer will be
slight. When the radiation cooling parameter is very much greater
than one, an elementary volume of gas will emit energy at such
a rapid rate that the energy of the volume will be reduced a

significant amount before it leaves the vicinity of the shock.
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This is true whether the shock layer is optically thick or optically
thin (that is, regardless of the size of the Bouguer number). This
physical argument is used to establish the existance of the thermal
boundary layer behind the shock in the radiation depleted shock
layer (chapter VI). If the shock layer is optically thick, the
reduction in enthalpy will continue only so long as the elementary
volume is within about a photon mean free path of the shock. Beyond
this point, the elementary gas volume receives radiation from all
sides and begins to establish a condition of radiative equilibrium
with its surroundings. The energy lost during the time required by
the elementary volume to travel a single photon mean free path is
characterized by the ratio of the radiation cooling parameter to

the Bouguer number, e/kP (it was shown in chapter V that the
enthalpy level in the interior of an optically thick shock layer

was characterized solely by the parameter, e/kP).

Within the interior of an optically thick shock layer, radlation
heat transfer can be treated in a manner analogous to conductive heat
transfer. Thus, one would expect that a parameter analogous to the
Peclét number could be constructed which would suggest the nature of
the enthalpy boundary leyer adjacent to the wall. Such a parameter,

which is a ratio of the importance of convective to radiative heat
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transfer is given by the grouping ki/e.* Since the thickness of

1/2 in the

the enthalpy boundary layer is characterized by Pe~
conduction problem, one expects, by analogy, the thickness of the
enthalpy boundary layer adjacent to the wall in an optically thick
e1/2 kP. The

importance of this parameter (in a somewhat different form) and its

radiating shock layer to be characterized bhy

analogy with the Peclét number was pointed out previously by Goulard
(ref. 21).

The importance of the surface reflectivity, L depends on the
importance of absorption in the shock layer. When absorption is
negligible, the effects of surface reflectivity are negligible
because all photons originating within the shock layer will escape
the layer and it matters not whether some of these photons are
absorbed by the cold wall or reflected by the wall into the free
stream. However, when absorption is important, the reflected photons
have a large probability of being recaptured in the shock layer. Thus,
an increase in surface reflectivity tends to raise the enthalpy level
of an absorbing gas in the vicinity of the wall.

In this section it was shown that both the radiation cooling
parameter € and the Bouguer number kP play prominent and inter-

related roles in determining the character of the radiating shock

*In the optically thick shock layer analysis of chapter V the
gas was assumed to be gray. Thus the fact that the Bouguer number
was based on a Planck mean absorption ceofficient was of no con-
sequence. However, in the case of a nongray gas, it would probably
be more correct to use a Bouguer number based on a2 Rosseland mean
absorption coefficient.



207

layer. Further, it was shown that the spectral variation of the
absorption coefficient greatly influences the role of the Bouguer
number. In general, then, one cannot ignore either of the processes

of radiation cooling and nongray absorption.



CHAPTER VIII

SUMMARY AND CONCLUSIONS

A mathematical model for the stagnation region of a radiating
shock layer was derived in this investigation subject to the following
conditions: (1) the gas in the shock layer is in local thermo-
dynemic and chemical equilibrium, (2) the body geometry is axisym-
metric, (3) +there is no mass addition to the flow from the body
surface, (4) the thicknesses of the shock and the viscous boundary
layer are small in comparison to the shock standoff distance, and
(5) absorption in the free stream ahead of the body is negligible.

The divergence of the radiant flux vector, which appears in the energy
equation, was formulated to include a wavelength varying absorption
coefficient. The body surface was considered to be cold and to reflect
diffusely and independently of wavelength a fraction r, of the
incident radiation. The results of a boundary layer analysis indicate
that the equations for the flow in the inviscid region are independent
of the boundary leyer equations only when the boundary layer is
optically thin or optically thick. It has been assumed throughout
this study that the boundary leyer is optically thin. Simple corre=-
lation formulas for the thermodynemic and optical properties of high
temperature equilibrium air were developed and used herein.

The general form of the governing system of equations wes found

to be integrodifferential in character. The solution of this system
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is extremely difficult to find even with numerical techniques and high
speed electronic computing machines. The approach of this investigation
was to take advantage of the simplified form to which the governing
equations were reduced when the radiation cooling parameter € and
the Bouguer number kP took on limiting values and obtain approximate
analytic solutions if availsble. It was found that the general problem
reduced to a singular perturbation problem in each of the four cases
studied. A small perturbation solution valid when the energy lost to
the shock layer by radiation is small (i.e., when the radiation cooling
parameter is small) is described in chapter III. The Poincare-
Lighthill-Kuo perturbation of coordinate method was used to obtain a
uniformly velid solution. This solution was used to study radiation
cooling, absorption, effects of surface reflectivity, and effects of
nongray optical properties.

An optically thin shock layer method of solution, discussed in
chapter IV, utilizes an expansion in terms of the Bouguer number kP
to reduce the governing system to purely differential form. Again
it was necessary to resort to the P-L-K method to obtain & uniformly
valid solution. This solution was used to study radiation cooling,
absorption, and the effects of surface reflectivity.

The optically thick approximation, valid when the optical
thickness of the shock layer is very large (i.e., the Bouguer number
very much greater than 1) was used to obtain the solutions of
chapter V. The governing equations were reduced to differential form

through the use of a substitute kernal approximation. Two thermal
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boundary layers were seen to exist; one adjacent to the shock and
the other adjacent to the wall. It was noted that the Rosseland
approximation together with a properly specified temperature jump
or slip condition at the wall reduces the governing equations to the
seame form as the substitute kernal approximation in the interior or
isenthelpic portion of the shock layer and in the wall boundary
layer. However, the Rosseland approximation with slip conditions
was found to be inadequate for analyzing the shock boundary layer.
The optically thick solutions were restricted to gray gases but were
used to study radiation cooling, absorption, and the effects of
surface reflectivity.

The radiation depleted shock layer was analyzed in chapter VI.
This approximation is velid when the rate at which energy is radiated
awvay from the shock layer is nearly equal to the rate at which energy
enters the shock layer (i.e., the radiation cooling perameter is very
large) so that the enthalpy level is very much less than the radia-
tionless value. The substitute kernal approximation was used to
reduce the governing system of equations to differentiasl form. The
method of matching of imner and outer expansions was used to obtain
solutions valid in the thermal boundary layer adjacent to the shock
and in the interior of the shock layer. These solutions were
restricted to gray gases but were used to study radiation cooling,

absorption and the effects of surface reflectivity.
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It is apparent from the results presented in chapters III
through VI, that radiatlon cooling first becomes important when the
rate of energy lost by radiation from the shock layer is only about
1 percent of the rate with which energy enters the shock layer.
Absorption in a gray gas begins to become important for shock layer
optical thicknesses greater than sbout one-tenth. An increase in
the surface reflectivity r, from zero reduces the radiant heat
transfer by a factor of roughly 1 = T and increases the heat
transfer rate to the wall by conduction because of an increase in
enthalpy level near the wall.

The results of some nongray calculations are presented in
chapter III. The Planck mean absorption coefficient can be used to
compute the enthalpy distribution and the radiation heat transfer
rate to the wall as long as the optical depth of the shock layer is
very much less than 1 in all wavelength regions in which a significant
amount of radiant energy is emitted. For larger optical thicknesses
nongray effects are very important.

The various approximate solutions were used to compute the rate
of radiant heat transfer to £he stagnation point of blunt objects
traversing an optically gray model earth atmosphere. The results of
this computation indicate that at every altitude and velocity there
is a finite value of body nose radius for which the rate of radiant
heat transfer to the stagnation point is a maximum (this result is

contrary to the earlier results, based on the assumptions of an
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isenthalpic and transparent shock layer, which indicated that the
heating rate was directly proportional tc nose radius). A signifi-
cant reduction in the computed velue of the radiant heating resulted
upon taking the nongray character of air into account. This served
to emphasize that the nongray cheracter of gases plays a very real
and important part in problems of radiation gas dynamics.

In general, the coupling between radiant and convective heat
transfer is such that increases in the rate of radiant heat transfer
result in decreases in the rate of convective heat transfer to the
body surface. Of course, the amount by which the total heating rate
is affected cannot be determined from this inviscid analysis.

It is hoped that the methods used in this investigation will
point the way to simplified methods for treating the general problem.
For example, the study of nongray absorption coefficients by means
of the small perturbation method may lead to the difinition of an
approximate mean absorption coefficient through which the general
nongray problem can be reduced to an equivalent gray problem. As
was polnted out previously (chapters V and VI) the integrodifferential
system of governing equationé for gray gases can then be reduced to
purely differential form through the use of the substitute kernal
method or other available methods (see for example, refs. 34 and 53).

Obviously such simplifications are urgently needed if current

analyses are to be extended to include the important effects of
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chemical nonequilibrium, absorption in the free stream ahead of the
shock, and the injection of foreign species into the shock layer

due to ablation of the body surface.
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APPENDIX A

THE VISCOUS BOUNDARY LAYER

In this appendix, a boundary layer analysis will be performed
on the integro-differential system (2.51) to (2.58) to determine the

L4 P R Y e - T - et A Lle o et -
form of the eguations in the inviscid region and the viscous

q
q
:
g
¢

boundary layer and to determine under what conditions such a sepa-
ration can be achieved. For convenience, the system will be

rewritten here

£(n) h (n) + N2 B n'(n)] + €Ifn} = 0 (A-1)

‘ ! 2
28 [3Z(h) f‘"(n)] +20(n) £°(n) - [8(n)] +a%a(n) =0 (a-2)

£(0) = 0 (A-3)
£'(0) = 0 (a-4)
£(n,) = 1 (a-5)
() - \/2)(?1 - X) (4-6)
n(0) = b (A-7)
h(nA) =1 (a-8)

221



a2z

where

€ = I‘ps K.P AA (A"9)
S

*
F,(n) = Pr_ 3,(n) (A-10)

and A, introduced here for convenience of notation, i1s the inverse
square root of the Peclet number.

When the parameter A 1is very much less than one, a per-
turbation type solution can be attempted. However, the energy
and momentum equations each lose the mest highly differentiated
term as A vanishes. As a result, neither the zero-order (in the
small parameter A) solution for f(n) nor that for h(n) can
satisfy all the boundary conditions. In particular, the conditions
£'(0) = 0 and h(0) = 0 must be relaxed, and the perturbation
solution will not be valid as 1 approaches zero. Thus, this
problem is a siugﬁlar perturbation problem of the "boundary layer"
type (refs. 36 and 54). |

In order to obtain the boundary layer form of the equationms,
the "stretched" coordinate ¢ = %fah is introduced where a is an
as yet undetermined consfant. It is also convenient, to avoid

confusion, to introduce the change in notation

i(g) = n(n) (A-11)

]

g'(g) = £'(n) (A-12)

I[e]

I[n] (a-13)
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(A-12) is written in this particular form because it is f£'(n) and

not f£(n) which falls to satisfy the boundary condition at 7 = 0.
When the stretched coordinate & and the definitions (A-ll)

to (A-13) are introduced into system (A-l) through (A-8), the

only choice for a which will retain the most highly differentiated

1.

terms without loss of the most significant terms in the "unstretched"

problem is « = 1. Thus, A and not 2 is the significant small

parameter and the stretched coordinate is
£ =1y (A-1h)

Perturbation solutions are now sought in the forms

e = ) N (8) (A-15)
n=0 :

28N = ) A g (¢) (A-16)
L‘ n
n=0

in the boundary layer, and

h(A) = ) A () (a-17)
n=0

£(n,N) =Z AR f!;(n) (A-18)
n=o0

in the inviscid region.
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It shall be assumed that all functions of h (and i) are
analytic about the value ho (and io) 50 that they may be
expanded in Taylor series about h = ho and 1 = io in the

following manner:

N o[,
o Ny Ny e ] F(n) ¢ W(n)my + 2 | F(r ),
+-;_-'ﬁ~(ho)h§ + ] (4-19)

The existance of the expansions

I[n,X] = i AR 1 [n) (A-20)

n=0

afen] = Z NN (A-21)

n

\"' .n
a = Z‘ N a (A-22)




e

225

n, = Z A N (A-23)

is also assumed without, for the present, specifying deteils of the
terns In[n] and Jn[éj.

Furthermore, to insure competibility of the boundary layer and
inviscid solutions, it is necessary that the inner boundary con-

dition on the outer solution be written in the form

where & (the displacement distance) is specified by the matching
condition
lim g(8) = X £(n) (a-25)
Eow

The quantity ©® depends on A and must be written in expanded

form

5 = A s (A-26)

n=1

The temmn 80 was chosen to be zero because & is order A.

The system which describes the sclutions valid in the inviscid
region can be obtained by substituting expansions (A-1T) - (A-23), and
(A-26) into sysfem (A-1) - (A-8). The result is an infinite power

series in A the sum of which is zero for all values of A. The
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only such series is one for which the coefficient of each of the A"
terms 1s identically zero. Theee coefficients yield a set of recur-

sive integro-differential systems. The system of zero order is

£,(n) n!(n) + ex [n] =0 (a-27)

2t,(0) £5(n) -[ri(w]” + o2 n () = 0 (2-29)
£.(0) =0 (A-29)

fo("AO)= 1 (A-30)

fé("Ao) = ﬁ (A-31)

ho('qu) =1 (A-32)

The system which describes the solutions velid in the boundary
layer can be obtained by substituting expansions (4-15), (A-16), and
(A49) - (A-23) into system (A-1) - (A-8). As for the inviscid
case, this procedure results in a set of differential systems.

The zero-order system is

[gl(io) i;“)]' + go(8) 1(€) + €3 [6] = 0 (a-33)
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2[3;(%) gg(é)]' + 2g (&) g7 (6) - [sé(é)j!e +a2 1 () a0

o ©
(A-34)
g,(0) =0 (a-35)
g,(0) =0 (A-36)
S;.im g (&) = £(0) (A-37)
- ®
1,(0) = h (A-38)
?ﬁm 1,(8) =1 (0) (4-39)
The first-orler term of the displacement distance 61, is
found from the matching condition
1n g (¢) = (g - 81) £1(0) (A-40)

E oo

It is epparent that the zero-order solution for the boundary
layer equations depends only on the inviscid enthalpy level in the
vicinity of the wall and not the enthelpy gradient. The enthalpy
gradient will, of course, have an effect on the first order boundary
layer solution. Thus, if the enthalpy gradient is very large, as it

can be for a radiating shock layer, the boundary layer solutions must

be carried out to first order in A.
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The divergence of the radiation flux (see eq. (2.63)) includes
integrals which extend over the whole domain of the problem. It is

convenient to separate each of these integrals into two integrals

as follows:

j;TKA ()(“ph )3t f*B{ ] (kI - =al)2t

(A=h1)

; f:” B)\[i('sk)]}zl( RN

and
T)\A T}\A
L sl s S m e e
A i : (A-h2)
(o]
Y [ B, 1(5.)\\)‘|E2(kp ?\sl.,\)ds)\
Jo R y
where
¥*
r;=xo;=x£ ky (1)ag (A-43)

is the monochromatic optical thickness of the boundary layer. § is

the thickness of the boundary layer in terms of the stretched

Dorodnitsyn variable ¢§&.
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It 1s convenient to redefine the monochromatic optical path

length as
(
£ < ¥ 1
A k/; &k(i)dg, for T, =T, (A-Lb)
T}\=<
n ) * * e
k/;g* &A(h dn + 73 for T, > LN (A=15)
.

In order to expand equation (2.63) as a power series in A, it
is necessary to expand the exponential integral functions and all

functions of h (and i) as well. Expanding the optical thickness
*

<
yields, for Ty = T%

(A-1E)

v

+ )\gf 11(&,).';}\(10)61@ ...
o]

*
and for Tx > TK

™= /;n K)\(ho) dn + A {\/; hl(n)r'ex(ho)dn

(A-b7)

] f: [ﬁ(ho(m) - K.x(io)]d% b
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The exponential integral functions can be expanded in the Taylor

series

=
~~
o
:
<d
) —
1]
=3L'«'.‘
—
w
(o]
1
<o
.‘-
»
o
)
Nl
+
—

(A-L48)
= En(}'o - yo) - \(JL.L - yl) En-l(xo - yo) T
If the argument is order A
E (W) = E (0) - N xE ,(0) + ...
~ ne=2
+ (_l)n-2 )\n-z -(nx—.a_)_r Eg(o)
[ n-l
- (-)? (7\“'1 znx) o (A-49)

)n-l xn-l -1 [ .1 .
- (-1 L Y n%] ces

vhere 7y 1is Buler's constant (7 = 0.577216). Use of this expansion,
vhile it avoids any dependence of the terms In[Q] on A, introduces
terms of order A In A into the boundary layér solutions.
Incorporating the various éxpansions into equation (2.63) and
separating the result into powers of A and A In A yields the

zero-order expressions
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The second of these expressions, which coﬁtains only definite
integrals, is valld only when expansion (A-l3) holds. But
equation (A-h8) converges in the first few terms only if the
arguement Ax (or in the terms of this problem A kP o) is small
compared to 1. Thus, expressions (A-49) and (A-50) can be used

only vhen the boundary layer is optically thin, that is,

* ¥*
)\K.PO' =kP'T << 1.0



APPENDIX B

THE METHOD OF SMALL PERTURBATIONS -
MATHEMATICAL DEVELOPMENT

In this appendix, the method of small perturbations is used to
obtain a solution to the integro-differential system of equations
governing the flow in the inviscid region of a radiating shock layer,
Mathematical details which are not considered to be appropriate to
the main test (chapter III) are included herein.

The system of equations to be treated are presented below.

£(n) h'(n) + €I[n] = 0 (B-1)

2£(n) £"(n) - [f'(n):l2 +a2n(n) =0 (8-2)
B(ly) =1 (8-3)

£(0) = 0 (B-4)

£(1,) = 1 (3-5)

T (W) (2-6)

\2x(1 - %)
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The conventional perturbation procedure.-' If it is assumed that
the functions h(n;€) and f(n;¢) are analytic in the vicinity of

€ = 0 they may be written in the expanded form

n(n€) = ) € n (1) (B-7)
(ne) = ) € 2 (n) (3-8)

It is anticipated that the first few terms of these expansions will,
provide an accurate estimate to the solution of system (B-1) - (B~6)
when the parameter € 1is small compared to unity.

The integral te:m I[n] and the constant QA als§ depend on
the parameter € through their dependence on the functions
h(n;€) and f(n;€). These quantities will also be assumed to be

analytic functions of € near € = 0, so that

I[nse] = Z € 1 [n] (B-9)

n=0

N .n
TIA = L € ’]A (B"lO)
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Substituting the expansions (B-7) = (B-10) into system (B-1) -

(B-6) yields

{fohé} + € flh(') + fohi + Io[n]}

(B-11)
ot o)+ oo - et 2
) Hfrgy - o e
ey - f et} o (212
o) -7+ () * ()
¢ Bl * e () * ey ()
i) e

{2,(0)) + e{g (0} + e (00} + v- = 0 (B-14)



ORI ARV B
PO) ) 5

+ 25' ’ﬁlfi;(%o‘)} + v 20 (B-15)
(a(m) - V) <) * ()
e fea(na) () * i, )
HE) e

Since the small parameter € 1s arbitrary system (B-11) -

(B-16) can be satisfied only if each coefficient of each expansion

in € 1is identically zero. This leads to a recursive set of

purely differential systems.

The zero-order system is

h! =0 (B-17)

2 2
134 - ] -
2fofo [i‘ol + 3 ho 0 (B-18)
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h°C&¥D =1 (B~19)
£, (0) = 0 (B~20)
fo(mﬁé> -1 (B-21)
(o) B (222

The solutions to this system are easily found with the result

h, =1 (B-23)
2 .
£, = (1-2a) 7 +an (B-24)
.oo=1 (B-25)
AO

The systems of first and second-order may be written in the

general form

] ] - -
fhi+fh 4T =0 (B-26)

f

ll-qy 1 = -
oI = TAE 4 Lf =0 (n) (B-27)

h(1) = ¢ (B-28)

n
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£(0) =0 K (B-29)
i‘n(nao) =8, (B-30)
fﬁ(“ao) =V, (3-31)

Equation (B-26) can be integrated directly to obtain

LI [xT+ £.(x) b (%)
h(n) =@ + j al*] - %x) Bl ax (B-32)
M o

The abriged version of equation (B-7b) admits the pair of linearly
independent solutions 1 + a/2(l - a) and na. Following Ince

(ref. 55) the complete solution is found to be -

A n o (x) ax
2 1 n
fn(n) = en 1< - 5 [2(1 -a)n+ a]h/j o RN Y:
Jo L\_,_-u,)x-ra._j

12t 2(1-2a) x -a
- : $ ax
2 n u/r‘ xZC(l - a.) X + aje n(X)

¢n(x) dx

1
2 - a) ‘ B-
( anjo TEPPYYk (B-33)

+
vl Lo

Substituting this expression into condition (B~31) provides a

relation for the determination of 1

Ah

, that is




at Q(x)dx

29 + / \l’
E(l -a) x + 81]2
The quantities ¢n(n}, ¢n’ 6, and V¥ are
2 (n) = - 3 a°n,(n)
o(n) = - 22,17 + + [t ] z(n)
¢1 =0
el = - (2 - a)qah

o’

Q(X)dx
e[ Jo, - - o
[(l-a)x+a.j & 87

h=-2(1-w%1
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(B-34)

(B-35)

(B-36)
(B-37)
(5-38) .

(B~-39)

- (1 -a)t

4

(B-40)

(B-41)
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(B-42)

The divergence of the radiant flux I[n] may be written in
expanded form by substitution of (B-7) and the expansions of the
quantities K?\(h)’ B)\(h),’ T.)\(T);G), and En['r)\(n;e)] into expression
(2.86) of the text. TFor completeness the expanded forms of ka2 By

T2 and En(Tk) are written down here.
sa(h) = (1) + € (1) m() + k(1) nyl)
1. 2
+ 37\ B + oo (B-43)
B,() = B(1) + € (1) m(n) + <[5, (1) ny(n)
+3 B,(1) hi(n)] + oo (B-b4)

o
T\(3¢€) = kP\/; k() dn

. T 1
- . K h ) d LI
kp[nk(m e [ Tnmans ]

(B-45)
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E [T\(n) - 7,(8)] = En(kP [0(2) (n - £) + ex,y(1) jo hy (x)ax + ])

= B[k 5,(2) (n -g)]

The following property of the exponential integral functions was

used to obtain (B-U46)

E _,(x) = dx E (x)

With these expansions in hand, expressions for the terms Iotﬁ]

and Il[ﬁ] can be obtained. The results are

Io[n] = 4; N B)‘{‘ (l - ﬂ) (1 - rox) EE[kknj}dk

. (B-47)
L] = - ny(n) /o {"‘7\ B\ {E:a[k)\(l - )]
+ (1 - r, ) E, [kﬂ]} - 25, ﬁx}d}\
[ e [ 0 8- o]
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1 _

+ Ky BA{El[k.A(l - n)]f h, (£) s

n
+ (} - rok) E, [kkn]t/;n h1(§) d%} + rlk Ez[?x”] aa
(B-48)

In these expressions, the notation has been simplified somewhat
by omitting the argument 1 in the terms Koo ék’ BA’ and ék and

by introducing the quantities

i = X 1 (5-49)

r°7\ =T E. -2 E3(k?\)] (B-50)

. 1
Ty =en {"7\ B, fo n (8) B, (ky8)as

+f, B, E (k) f h (E) & + 1, x B (k)|
AN AN S WAV Y | L-‘-l noe\ ’\/J

(B-51)

The P - I = K solution.- It has been pointed out in the text

that the first order solution for the enthalpy distribution has a
logarithmic singularity at the point 7 = 0 and the second order
solution behaves like the logarithm squared. As a consequence the
assumed expansion diverges as the origin is approached and the
small perturbation solution is not uniformly velid. In order to

obtain a solution which is uniformly valid throughout the domain of
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the problem, the Poincare - Lighthill - Kuo method (see ref. 47)
will be used. In this method the independent varieble as well as
the dependent variables is expanded in a McLauren series of €.

For this problem

M= x e ni(x) + € nA(x) + -ee (B-52)

h(n;e) = h"o"(x) + € hi*(x) + €2 hja*(x) 4 e (B-53)

The superscript * has been used here to distinguish between the
coefficients in the P-L-K expansion and the coefficients in the
conventional expansion (equation (B-7)). The quantities f£(3)

and I[n] may also be expanded in terms of x as follows:

£(n) = €’ £ (n) = " r Ec + en?{(x) + ]
= fo(x) + e[fl(x) + nI(x) f(‘)(x)] + eztfe(X) + n;_‘(x) fi('r])
+3(x) £2(x) + 5 0200 £1(0)] + o (B-54)
Similarly,
I[n] = Io[_x] + e{]:l[_x] + 'r];(x) Ié[x]}+ (B-55)

When expansions (B-52) - (B-55) are substituted into equation (B-1),

a set of equations for h:(x), h;(x), hZ(x), and so forth result.
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The quantities ni(x), ﬂg(x), and so forth and their first derivatives
also appear. These quantities are arbitrary and should be chosen in
such a manner as to reduce the strength of the singularities in the
higher order terms, h;(x), so that these singularities are never
stronger than that of the lowest order singular term (in our case

the first order term). Pritulo (ref. 48) has shown that the
coefficients in the expansion of h(n;€) in the P-L-K method are
related to the coefficients of the conventional expansion in the

following manner:

h:(x) = ho(x) (B-56)

Bi(x) = hy(x) + n¥(x) hi(x) = hy(x) (B-5T7)

U}

nA(x) = hy(x) + MH(x) hi(x) + nX(x) h!(x) + % n§(x) 7 (x)

ny(x) + ¢ b (x) (B-58)

Now, instead of choosing differential equations for the n:(x) in
order to satisfy the criterion previously states, one can choose the
values of the n;(x) directly. In this case, an obvious choice is

simply*

* *
This choice satisfies the condition nl(l) =

nAi.
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() = =00 /0 () (B-59)

*
which gives h, (x) =o0.

The result of transforming the independent variable by meens of
formula (B-52) is to remove the singularity from the domain of the
problem. That this is true can be seen by noting that the condition
n =0 does not imply x = O but rather (for this problem) impiies
that x 1is some small positive number X Hence, to first order

¥*
h(n; €) =1+ ehl(n) is nonsingular in the domain 0 5 4 S 1.



APPENDIX C

OPTICALLY THIN SHOCK LAYERS =

MATHEMATICAL DEVELOPMENT

With the substitute kernal espproximation the divergence of the

radiant flux vector can be written

e LN -EkPI'r. (n)-7,(¢&)
I[n7]= 2x,(n)B(n) - 2 (n) (£)B, (&) AN T
D]mnkpfowfo’xxe ¢
2k, (n) A 2k, 7, (€) (c-1)
=2k, 7, (7 2K, T
+r e 2™ JF K\ (£)B, (&)e BT at ) an
o}
The monochromatic optical path length kPT)(n) is given by the
expression
n
() =k, [ s (Eas (c-2)
Yo
where kP is the Bouguer number
kp=0g fp B8 (c-3)
s
The approximate governing system presented in chapter IV is
£f()h'(n) + eI[n] =0 (c-k)
2 o
2£()e"(n) - [f'(nﬂ +ah=0 (c-5)

2k6
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£(0) = 0 (c-6)
f(n =1 (c-7)
() * TR (©)
(1) - 2 (c-9)

The quantity h 1is defined by the expression

A
- 1
e fo n(e)ae (c-10)

The conventional perturbation procedure.- If the functions
n(n; kp) and £(n; k;) are analytic in the vicinity of kj = 0",

they may be written in the expanded form

o]

h(n; kp) = y kp 1, (n) (c-11)
n=0

£(ns kp) = ) KD m(n) (c-12)
n=0

It is anticipated that the first few terms of these expansions will

*
It is assumed herein that such is the case.
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vprovide an accurate estimate of the solution to the system (C-4) to

(C-10) when kp 1s small compared to unity.

In addition, all quantities which depend on the parameter kP
either directly or indirectly must be expanded in terms of k? For

example, a function JF[h(n)] becomes
¥[nr)] = SF[h,s(n) *kp y(n) + )
= 1¥[ho(n)] + &y % ho(n)]hl(n) +oaae (c-13)
= 200+ F (m () + ... (c-1k)

The quantities ’J-O(T]) and 'ly-o(n) have been introduced to simplify

the notation. The constant 1 A is given by the expansion

'r?A = ’.]Ao + kP T]A_L + .. (c-15)

Substituting the expansions (C-11l) to (C=15) into system

(C-4) to (C-10) yields

{fo(n)hg(n) - 2enPo(q)Bo(n}
+ kg fo(n)hi(n) + £, ()n(n) - ee[kPo(“)Bo('“)
+ ﬂPo(n)l'Bo(n)]hl(n)

+ 26(1 + rw) fm[n?\ (n) \/]]Ao N (ﬁ)B?\ (§)d§]dk}+ eee =0
o o] o) o] o (C-16)
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2 | |
2fo(?])fg(n) - [fc',(n):l + 8% hy + Ky 2f°(n)f{(ﬁ)

2—
)]
- 2r)(n)fg(n) + 262()fq(n) + & H + oo = 0

1
(C-17)
fO(O) + kal(o) + e00 =0 (c-18)
fo(iﬁg) + kP[?l(?Ab) + qalfs(ﬁaé[} + .t =0 (C-19)
1] 1 " 2
fo(nab) + kP fl(qab) + nA1f° (QA;) + ees = 1+ AR
(c-20)
ho(qu) + kg hl(qu) N quh(;(q%) oo =1 (c-21)
where
_ _ N N
b+ K e = ;i?-\jz °n_(8)ag + i ﬁir- . ® n(8)at
(o] [¢}
1 N n
-;l- f °h0(§)d§+ﬁ + ... (c-22)
(o] i
'qu 1AO

Since the small parameter is arbitrary system (C-16) to (C-21)
can be satisfied only if each coefficient of each term is identically

zero. This leads to & recursive set of purely differential systems.




The zero-order system is

£ (nnl(n) - 2eKPO(n)BO(n) =0

2 o —
2f, (n)fg(a) - [%;(ui} +8"h =0

e}

fo(O) =0

fo(T]A ) =1
o

The solutions to this system are

1 | "
f dh % 1, (L - a¥)x + a¥
h

o K‘.P(h)B(h) ) a x

A()

2
0 = 1 ofE ) <ol

= (1 - a*)X2 + a¥ x

250

(C-23)

(c-alk)

(c-25)

(c=26)

(c-27)

(c-28)

(c-29)

(c-30)

(c-31a)

(C-31b)



1+ /2X(1 - X)

N (c-32)
© 1+ 1/%5; X(1 - X)

- 1
by = k/: b, (x)ax (C-33)

e

where the definitlons
a* = efh_ 7 (C-3k)
o A
[o)
x=nﬁh (c-35)
Q

have been added to help simplify the notation.

"~ The first-order system is

£_(a)ng(n) = 2¢[i, ()8 () + w5, (0B, (2)]n ()
o o -

0 T]A
- () - 22+ ) [ h(n) [ "%(E)B“o(g)dﬂd“

(c-36)
£ (Me3(n) - £2(0)g1(a) + £2()ry(a) + 585 hy = 0 (c-37)
fl(O) =0 (0”38)
29
A
P £ = - C-
fl(nab) "8 °(q°b) 1+ 42X(T - %) (6-29)
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. 2(1 - ;*-),,Al
.fi(ﬂAo) = 'ﬂ%fg(ﬂao) == ’li (c-10)
(o)
h](’lao) = -nA.Lh‘;(nAo) - 2eny (c-11)

The solutions to this system are

a By
(0]
b (n) = -Eenpo(x)Bo(x) TlAl + 2;1.0 (l

i TN ) (1 - x) 1 (1 - a®)x + a*

[¢]
- — In

1+ 1/2x(l -x) (1 -a")x +a* a¥ X

/‘p | fl [ 4 "
1 [, (8 5 (808, (8 )dg_-]dk N

s2e(1 (x)B, ()1
£+ 5 LA WA £ (8)x, (8)B(£)
O

(c=k2)

~ — D

2 + 1/eﬁox(l - X)

1
! -
£.(x) =2 —x[1 - (Cc-k3)
1 =
T]AO 1+ 4]/21'10)((1 - X)
a*h, (o)
= - — C-4
qA_L hho T]Ao
1
_ ho J/; hl(} )dA
h. = (C-IFB)
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The P-L-K solution.- It can be seen on careful inspection of

equation (C-Lo) that the Tirst-order term hl(x) displays a singular
tehavior in the viecinity of the wall (x = 0)¥ Consequently, the
assumed expansion for h(x; kP) diverges as the origin is approached
and the perturbation solution is not uniformly valid. However, if
the coordinate x 1s perturbed, the solution can be mede uniformly

valid. Thus, according toc the P-L-K method,
x =3+ kg x;(y) + ... (c-12)

wthere y 1s the transiormed variable. The enthalpy vwhen expanied

in terms of k_, with coefficients as functions ¢f y, not X,

becomes
-, - N A, - .. - *
ﬂ(x, 1‘?) - L‘O(J) + ILP hl(y) + DR (C“Ilg)
and the nondimensional stream function
% %
il = f S =5
£(x5 k) = 1(¥) + kp £7(y) (c-50)

According to Pritulo (ref. 43), the coefficients in the P-L-K-
expansions can be related to the coefficients in regular expansions

in the {clloving manner

h;(Y) = ho(y) (c-51)
Ry - n (0) + = (nl(y) (C=52)

* >
See chapter IV for a nore complete discussion of this singularity.
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¥ P
£2(y) = £,(y) (c-53)
£¥(y) = £,(y) + LWL () (C-5k)
1 1 1 o
The arbitrary quantity xI(y) should be chosen so as to eliminate
the singulerity in hi(y). An obvious choice is
% (¥) = b, (v)/nl(¥) (c-55)

The transformation of the independent variable by means of
formula (C=-43) removes the singwlarity from the domain of the problem,
because y takes on some small positive velue vhen x 1is zero.
Hence, the first-order term h;(y) is nonsinguler throughout the

domain of the problem O £ x < Xpe



APPENDIX D

THE RADIATION DEPLETED SHOCK LAYER -

MATHEMATICAL DEVELOPMENT

The system of equations governing the flow in the stagnation

a2

reglon of a rediating shock layer is derived in the text using the

substitute kernal approximation (see chapter VI).

I:f('r)h'('r)\J

l\)]\,u

eB"(T) - r kP f(r)h'(7) =0

S
af(n)f"(q) - [f'(n)J +ah(y) =0

£(0) =

This set of equations is subject to the additional condition

T

£(r)n'(7) + %kPJC B(t)e

- % B(T) + % re

256

3
-5 KT

kP ,t--rl

This system is

(D-1)

(Dp-2)

(D-3)

(D-4)

(D-5)

(D-7)
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where T
A -EkPT
r=1rk, \/: B(t)e at

When the parameter € 1s very much larger than unity and k;
the asymptotic solution to the energy equation (D-1) is simply

B(7) = C, + C,7. Substitution of this solution into the asymptotic

form of the integral condition (D-7) gives C, =C, = 0. This
solution obviously does not satisfy the boundafy condition h(TAJ =1,
which indicates that the asymptotic solution is not valid in the
vicinity of the boundary (shock) at T = o+ This is not surprizing
when it is recalled that the existance of a thermal boundary layer
has been established on physical grounds in the text (chapter VI).

In order to determine the form of the "boundary layer" equation

valid near the shock, the stretched coordinate

€ a (TA = )en (D'9)

and the functions
‘ Bb(ﬁ) = B(7) (D-10)
£, (&) = £(7) (D-11)

are introduced. The subscript b indicates that these functions are

valid only in the boundary layer.
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Rewritten in terms of the boundary layer variables, equation (D-1)

becomes

-e3n‘1[fb(s)hg(§i| Te 22 1 (om(e)

If n 1is set equal to 1 and € is allowed to grow without limit,
the most highly differentiated term will be retained without losing
the significant term of the unstretched problem. The resulting

differential equation is

[fb(e)h;)(g)]" +3BI(e) = e 222 (am(8) (p-12)

The momentum equation, when written in terms of the stretched

coordinate ¢ = (QA - ﬁ)e becomes

. 2 2 2
22, (£)£1(¢) - [f;)(cj - <2 &®n (0) (0-13)

It has been shown that the boundary layer 1s characterized by

the parameter e-l and it would seem proper to expand both the

boundary layer and asymptotic solutions as power series in e-l.

However, fa(q) (vwhere the subscript a indicates the asymptotic
solution valid far from the shock) is not anelytic in e'l near

e'l = 0, but is anelytic in 6-1/2. Consequently, the solutions
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will be expanded as power series in €-1/2’ that is

B (1) = ) &2 B, () (D-14)
n=0

0 = ) 21 () (p-15)
n=0 n

B(2) = ) €2 B, (8 (D-16)
n=o

20 = ) e (o) (D-17)
R n _

In addition, it will be assumed that the enthalpy h is an
analytic function of B throughout the interval O f B f 1, and
from physlcal considerations it will be assumed that h = O when

B = 0. Then

n(B) = h(Bo) V- Blﬁ(B;) + et [égﬁ(ag + - Bi BT(BO)J T

vhere the dot (°) indicates differentiation with respect to the

(D-18)

variable B . Substitution of expansion (p-14), (D-15), and (D-13)

into system (D-1) to (D-7) gives
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2y (n) + 2 g.sgl(f)
O

+ e"{% Bge(v) - [fao(T)ﬁ(Bao)B;o(T)]

+ %ka;fan(‘r)l‘l(Ban)Be"ﬂ(f)B +
o \%/ %

2
{efaowf;o(n) SR h(Bao)} . e'l/g{efaom)f;l(n)

0 (D-19)

-2 (q)f! (q) + 2" (q)f. (n)
& A & &
2 L]
+ a h(Ba )Ba (M Y+ .e0=0 (D~-20)
(o) 1
f IO\ + €-l'/2 o VPN Y + -l . IR Y + - P ) a
a ) ia {O) + € ry (0) eee =0 (D=-21)
o} 1 2

1.2 o
‘. fao(qu)}+ e =0 (p-22)
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(D-23)
T -2k |t -2k 1
{ngf B, (t)e el t' 33 ()+ e QKP}
o )
+<=."1/2{9k_P ] B (t)e 2kp|.rtldt+5lcP Ala(v)
- T -
-5B, (1) + 1e-ekp}+e-l{g'k? LA Bae(t)e 2™
* % kPTAlBal(TAb) * % kPTAEBaO(TAJ - % Baa(T)
B
+ g r e 2 + fao(T)h(_ o) B! (1)
- 2 kP(T -;) eﬂﬁ |
+g-kPe 2 4, f [Bb (&) - B, (TA )\Jdg}+ e =0
o 0 o\ “o
(D-24)

where

T p)
A - 5 kit
o} 2
ro=71 k j; Bao(t)e at (p-25)
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T 3 :
A -2k t
o} 2 kP
r. =r B (t)e dt + r k.7, B (7 (D-26)
1 kafo 8y w‘PAlao(Ao)
T 3
A - 5 kgt
r.=r °p (t)e ° dt + r k.1, B [T
2= T “/o 8 kPAz 2(%)
- 3 €T
+rkT B /-r\+r}'e2kPTAo Ar" ()"u [+ ﬂu.s
w‘PAlal\AO) w P Jo [_“b ok O_]
(D-27)

The shock layer optical thickness is determined from the condition

{"Ao ' foTAo % (%) ‘% et {"Al ‘
RO A AT
o, -, F o, (*Aoﬂ
(TPl - P
SR, )B (e

- f:TA [K;l(%o(g)) - &;l(Bao(TAo))}d% F e =0 (D-28)
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The corresponding boundary layer eq_uations. are obtained by

substituting the expensions for B and f, into equations (p-12)

b
and (D-13) with the result

[fbo“’ﬁ(%o)"éo(“ + gnbo<g>]

+

-1/2 . o0
£, (&)h(B, \B! (& 3 G- 3
) [bo( ( o\) bl( ) fbo( )h(BbO)Bbo( )Bbl(;)

+

¢ . . 2 "
fbl( )h(Bbo)Bbo(é) +3 Bbl(g)]

+ e Mt eh/B \B' (&) + ... s cee = 0
€ [bo( (bo) be(
(D-29)
af, (L)) (§) - |£r (8) ; v M2 o0 (&) (¢8)
% P "bo j‘ o, b,
- 28 (O] {8) + agy {85y \s)
o 1 bo 1 j
+ e'-'l{é’fb (C)fg (¢) + }+ vee = 0
0 2
(p-30)
£,(0) + et 2 £, (0) + et £, (0) + ou = 0 (D-31)

1 2
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lm £ (8) - 1}+ €-1/2 Um £, (C)}
£ - o o , - o 1

+ e 1inm £, (8) + -———fﬁ;——-—{}-k cee =0
) {g - 2 \V2X(1 - X)
(D-32)
B, (0) + e1/2 B, (0) + el B (0)+...=1 (D-33)
0 1 2

- ® 1

lim B (§)-B )}+e1/2{ lim B, (§)

- Bal(on) -7 )} +e” { llm Bb2(§)

"B (")~ "a B (A .'T B ( \ SBéI \
2\ "o/ 1 "1\ Toj
l P 11 -
- § TAl Bao(TAO)} + ... =0 (D’D"")

{lim B, (§)} 1/2{ B} (5)}
-3 & o § Do

1
t) - B' (T cee = -
+ {lim Bb() BO(A>}+ 0 (D-35)

E o o}
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Systems (D-19) to (D-2Lk) and (D-29) to (D-35) leed to & set of

recursive systems for the solution of Ba s fa s B

end f. .
108y o

’
bi i

Zero-order solutions.=- The differential system which describes

the asymptotic solutions to zero-order in the small parameter € 12
is
B) (1) =0 (D-36)
o
e 2
2r_ (n)e! () - [f; (ﬂ I CRRE (D-37)
o o o) o)
£, (0) =0 (D-38)
o
£, (T]A) =1 (p-39)
(e} [o}
£ 2 —m—— (D-L0)
ao(Ao) N2X(1 = X)
T 3
A : --kPlt-Tl
3 2
5 kp f B, (t)e dt - 2B, ()
(o] O o]
3
- 2 r e- 2 kPT =0
2 "o -
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The solution is

B, (7)) =0 (D-k2)
(o]
2
N -
£, O nA) (D-43)
n, = DEL-0 4, xa - w) (D)
(o]
N
TA = lo (D-l!-s)
o & —(0)

The zero-order boundery layer system is

£, (g)ﬁ(Bb )31; (8)+ 38, (1) =c® 4clo) ¢ (D-16)
(o] o o} (o]
| 2
2s, ()5} (6) -[fgo(cﬂ -0 (D-47)
£ (0) =1 (D-18)
o
lim £, (&) =1 (D-49)

§—)oo o]

B, (0) =1 (D-50)

o



im B, (&) =0

E—- o 0

1im B};(g):o
£E—> o o

The solution to this system is

1
2 . .

o}

(o]
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(D-51)

(b-52)

(D-53)

(D=54)

First-order solutions.- The differential system which describes

thé asymptotic solutions to first order in ¢

B;l(‘l’) =0

2 -
207" (n) = Wnf' (q) + 4f ) +8X(1 - X)n(0)B_ (n) =0
ntg (1) - ey (n al(n ( (0)B, (n

fal(O) =0

(D-55)

(D-56)

(D-57)

(D-58)

(D-59)
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T

- =itetlk .
o 2 P 3
kp \/;' Bal(t)e dt - EBal(T) +tyre

(V1NN
PPN

0 (D-60)

* g'kP TalBao(ﬁA$>

The system for determining Ba (v) 1is identical to the system
1
for obtaining B, (1). Therefore,

[e]

Bal(T) =0 (p-61)

and equation (D-56) becomes

anaf;lm - bafy () + 2, (1) = 0
subject to the boundary conditions (D-57) and (D-58). Inspection of
the preceeding equation indicates that condition (D-57) is satisfied
automatically, so that another independent condition or equation must
be specified in order to obtain a nonarbitrary solution for fal(n).
This condition can be obtained from the differential system for terms
of second order. '

The system which determines the first-order boundary layer

solutions is
. ' .. 9 B'
h(Bbo)Bbl(e) + h(nbo> bo(g)nbl(g)

+2B (8 - c:(Ll) + céa) : (p-62)
. .
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£y (¢) =0 (D-63)
1
£y (0) =0 (D-64)
1
Um 1, () =0 (D-65)
C—) © 1
B (0)=0 (D-66)
1
lim (¢) =0 D-67)
£= o Bbl (
lim B' (¢) =0 (D-68)
£ = Bb.‘L
The solution to this trivial system is, of course,
Bbl(s) =0 (p-69)
' f, (¢) =0 (p-70)

1

Second-order solutions.- The differential system which determines

the second-order asymptotic solution is

B;z(T) =0 (D‘7l)

2 2
27t (n) = Unf! (n) + 4, (n) = =n% |2£. ()£ (n)
k 8 L 8 85 e e

2
- [f; (q)] + 8.21.1(0)3& (nil (D-72)
1 2
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fag(o) =0 (D-73)
1 A\
%) %
t = f' ) -2 (—— - == (D-74)
a2( ( y T,
f" 2 Wag (D-75)
T] -~ — -
(A) o) "2 2
[e]
T 3 3
. r'a - % kp|t-T] 5 -5 kpT
%k}? Jo ° Bag(t)e dt - 2Ba2(T) + 5 rye

" ETa R (7)) * 0 R ()

-2k fr, -1\ A"
+ %kpe 2 k“P(Ao )J'oe A[Bbo(g) - Bao(TA ):]dg =0 (D-76)

[¢]

The solution to this system is

B ('r) -kP(l+rW)|}+%kPﬂ
a NN
2 2[1 * !I(l - rw)kPTAo]

The second condition for the quantity £, (n) can be obtained
1
by evaluating equation (D-72) at n = O, which gives

2y (0) = axlﬁ(o)BaQ(o) (D-78)

(D-77)
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With this condition, the solution for fa (n) can be completely
1

specified with the result

2, (1) = o h(0)B, (0) @-i @l—) A (D-79)
: [¢] o

1 o
In eddition
nAl = - anio W (D-80)
and )
A T o) (D-81)

. As before, it is necessary to look to the next higher order
system in order to obtain a second independent condition or eguation

for f_ (1). This condition is
2

I )

O
R W

t (n) = n n
W=V \w
-
In order to solve equation (D-72) for £, (n) it is necessary
. 2
to express the optical path length T as a function of 1. This

can be done with aid of the definitions of v and 7. The result is

(o) Ab

T =T, (-nj->+ 0(6-1) (p-83)
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Now, equation (D=72) can be written in the form
2
an £y (n) = Ung! (q) + b£_ ()
82 82 82

2
- _a2n fl(O) 3(1 * rW)kP T8 n
Ao hEL + 1’1-:-(1 - rw)kPTA]

(o]

The solution to this equation is

+ [Aln qu]<n—;1-> + AG-Z—) In (q—}-) (D-8k)
© (o} [o]

where
2 * \‘2 -~ T ‘.2
22 » /(l’-‘-w)? Ao .Al
A=anAh(O)8 3 \ = 3| == k7o
o] E_ + K(l - Iw)k'PTA] Ao o
o
Also )
2

il
N ! 2k . (1 -1n (D-85)
T]AE ) T]Ao(’]Ac) [l i Ao( T]Ao)]
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and

(o} N \ "o /
’ "/o o)y jdg (D-86)

Radiative flux and standoff distance.- In chapter V, it was

shown that with the substitute kernal aspproximation the radiant flux
passing into the cold wall can be expressed in terms of the black
body emissive power of the gas adjacent to the wall. Substituting

the solution for Ba(o) into this expression (5.5) gives

£
=

1-7 =2I’l+%(l-rw)kPTj'} (p-57)

I 3

L

The ratio of the shock standoff distance to the shock standoff

distance for radiationless flow is given by the condition

T

- A -1
A- fo n(B)k;L(B)at (D-88)

Expanding this expression in powers of <-:'l/2 gives



P

27k

e =] Wi ‘
)T (7
A= {nAoEl(O) + 1(0) :zii‘(g))—JBag(o)[l +3 kp TAQ]

€T +€1/27 +7

+ fo % | “ Agh(abo(g))gl(zbo(g))dg} (p-89)
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APPENDIX E
LIST OF SYMBOLS

Definition
constant defined by equation (2.54%)
n th-order coefficient in the pertur-
bation expansion of the constant a
constant defined by equation (4.15)
black-body emissive power, B ='§ Th;
chapter II only
nondimensional black-body emissive
povwer; except for chapter II

Planck function, defined by equation

(2.11); chapter IT only

nondimensional Planck function; except

nondimensional black-body emissive
power; chapter II only
nondimensional Planck function;

chapter II only

B,(n) = B[h (n)]

B, (1) = B[, ()]
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Units

none

none

none
erg/;m?-ster-sec
none
erg /cm3 -ster-sec
none
none

none

none

none




mbi Wi Wi

value of the nondimensional black-
body emissive power in the interior
of an optically thick shock layer

value of the nondimensional black-

body emissive power in the gas

adjacent to the wall in an optically

thick shock layer
constant definedin chapter V
constant defined in chapter V

nondimensional black-body emissive

power in the interior of a radiation

depleted shock layer
n th-order coefficient in the pertur-
bation expansion of Ba

nondimensional black-body emissive

ower

in the shock boundary layer
in a radiation depleted shock layer

n th-order coefficient in the pertur-
bation expension of Bb

constant in formula (6.34)

constant defined by equation (5.26)

constant defined by equation (4.19)

constant of integration

constant of integration

none

none

none

none

none

none

none

none

none

none

none

none
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velocity of light

exponential integral function of order
n

nondimensional stream function defined

by equation (3.31)

function of h defined by equation
(2.54)

function of h defined by equation
(2.54)

function of h defined by equation
(2.54)

nondimensional stream function defined
by equation (2.35)

n th-order coefficient in the
perturbation expansion of f

v

n th-order coefficient in the P-L-X
expansion of .f

nondimensional stream function in the
interior of a radiation depleted
shock

n th-order coefficient in the pertur-
bation expansion of fa

nondimensional stream function in the
shock boundary layer in a radiation

depleted shock layer

cm/sec

none

none

none

none

none

none

none

none

none

none

none
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n(n)

n th-order coefficient in the pertur-
bation expansion of ﬁb

stream function; chapter II only

nondimensional stream function in the

viscous boundary leyer; defined by

n th-order coefficient in the pertur-
bation expansion of g

nondimensional enthalpy defined by
equation (3.35)

static specific enthalpy; chapter II
only

nondimensional enthalpy; except for
chapter II

Planck's constant

xPficlent in the portur-
bation expansion of h, the non-
dimensional enthalpy

n th-order coefficient in the P-L-K

expansion of h, nondimensional

enthelpy

n th-order coefficient in the expansion

of h, the static specific enthalpy;

chapter II only
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none
/ 2
g/em -sec
none
none

none

erg/g

none

erg/sec

none

none

erg/g
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nondimensional enthalpy; chapter

"II only none
average value of h, the non-

dimensional enthalpy; defined by

equation (4.5) none
n th-order coefficient in the pertur-

bation expansion of -}I none
value of h for which 7» (the

exponent in the correlation

formula. KP(h) = Ch7) changes none
total enthalpy; chapter II only erg/g
value of the nondimensional enthalpy

in the interior of an optically thick

shock layer . none
static specific enthalpy in the gas at

wall conditions; chapter II only erg/g
nondimensional enthalpy in the gas

adjacent to the wall; except for

chapter II1 - none
approximation to the ratio of convective

heat transfer to the stagnation point

in a radiating gas to that in a non-

radiating gas | none
divergence of the radiant flux vector

chapter II only erg /cm3 -sec



He

nondimensional divergence of the
radiant flux vector; except in
chapter II

nondimensional divergence of the
radiant flux vector; chapter II
only

n th-order coefficient in the pertur-
bation expansion of the nondimensional
divergence of the radiant flux vector,
I

nondimensional divergence of the
radiant flux vector defined by
equation (3.36)

nondimensional enthalpy in the viscous
boundary layer; defined by equation

582;)

[\V]

~~

n th-order coefficient in the pertur-
bation expansion of 1

nondimensional divergence of the
radiant flux vector in the viscous
boundary layer; defined by
equation (2.87)

n th-order coefficient in the pertur-

bation expansion of J

none

none

none

none

jote rotsy

none

none

none
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Pe

specific intensity of radiation

mass emission coefficient

Boltzmann's constant

effective coefficient of heat
conduction including energy
transport by molecular collisions
and by diffusion of reacting

gpecies

Bouguer number; kP - psRPJQA

direction cosine between the
direction of a beam of intensity
JA and the i th-direction

Peclét number

Prandtl number

pressure

o 6
standard pressure of air, 1.013 x 10

n the-order coefficient in the expansion
P .

i th-component of the combined radiant

" and conductive heat fluxes

n th-order coefficient in the
expansion of 9y

component of the conductive heat flux

vector in the n-direction
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erg/mus-ster-sec

erg /g- cm-ster-sec

erg/ox

erg/cm-sec-ox

none

none

none

none
dyne/cm2

dyne/cm

dyne/cm?
/ 2

erg /ecm -sec

erg/cme-sec

/ 2
erg/cm -sec
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qi component of the conductive heat fluﬁ:

vector in the i th-direction erg /cme-sec
qR component of the radiant heat flux

vector in the n-direction erg /cmz-sec
qz component of the radiant heat flux

vector in the 1 th~direction erg //cmg-sec
q?\i component of the monochromatic

radiant heat flux vector in the

i th-direction erg /cma-sec
qs nondimensional rate of radiant heat

transfer to the wall none
R ‘ gas constant for air, 2.882 x 106 cm";~> /seca-ol{
RN body nose radius cn
Rs shock radius in the vicinity of the

stagnation streamline cm
Re Reynold's number none
r position coordinate cm
r°>\ defined by equation (3.13) none
rl)\ defined by equatién (3.18) none
r, reflectivity of the wall ' none
S5\ radiation source function erg /cm3 -ster-sec
8 position coordinate cm
8\ nondimensional variable of integration none

T temperature %k



"

standard temperature, 273.16
temperature of the wall
nondimensional variable of integration
component of gas velocity in the

r-direction

expansion of u

component of gas velocity in the
i th-direction

volume

free-stream velocity

component of the gas velocity in the
z-direction

n th-order coefficient in the

expansion of w

chapter III

normalized Dorodnitsyn coordinate,
X = n/qab; chapter IV

n th-order coefficient of the P-L-K
expansion of x; chapter IV

value of the transformed coordinate

for which % = 0; chapter III

none

cm/sec

cm/sec

cm/sec

cm/sec

cm/sec

cm/sec

none

none

none

none
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>

coordinate in the transformed
plane; chapter IV

position coordinate

local angle of inclination of the
bow shock from the stream direction

mass extinction coefficient

inverse Boltzmann number,
P = bor! W3

Buler's constant, 7 = 0.577216 ---

exponents in the correlation formula
for kg (equation (4.18))

shock standoff distance

shock standoff distance for non-
radiating shock layer

ratio of shock standoff distance
for radiating and nonradiating
shock layer, Z = A/AA

displacement distance for the viscous
boundary layer -

exponent in the correlation formula
B = ha

n th-order coefficient in the pertur-
bation expansion of the displacement

distance, B

none

none

N/

cm/ g

none

none

none

cm

none

none
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Ve

radiation cooling parameter,
€= haT:'kB/p“wz

transformed nondimensional Dorodnitsyn
coordinate in radiation depleted shock
layer

transformed optical path length in
optically thick shock 1ayei"

Dorodnitsyn coordinate defined by
equation (2.34); chapter II only

nondimensional Dorodnitsyn
coordinate

nondimensional Dorodnitsyn coordinate;
chapter II only

variable of integration

location of. the shock in terms of the

Dorodnitsyn coordinate; chapter II
only

nondimensional location of shock in

terms of the Dorodnitsyn coordinate

nondimensional location of shock in

terms of the Dorodnitsyn coordinate;
chapter II only
n th-order coefficient in the pertur-

bation expansion of qA

none

none

none

none

none

none

none

none

none
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n th-order coefficient in the P-L-X
expansion of 1

constants defined by equations
(B.11a) and (B.11b)

mass absorption coefficient;
chapter II only

nondimensional mass absorption
coefficient

nondimensional mass absorption
coefficient; chapter II only

Planck mean mass absorption
coefficient; chapter II only

nondimensional Planck mean mass
absorption coefficient

nondimensional Planck mean mass
absorption coefficient; chapter
II only

n th-order coefficient in the pertur-
bation expansioﬂ of Kp

Rosseland mean mass absorption
coefficient

wavelength

boundary layer parameter, A = Pes-l/g

coefficient of viscosity

second coefficient of viscosity

none

none

none

none

none

none

none

o [g
cm

none

dyne-sec /cm2

dyne-sec /cm2
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-1l

transformed nondimensional
Dorodnitsyn coordinate in viscous
boundarxry layer

thickness of the viscous boundary
layer in terms of ¢

density

standard density, 1.288 x 10~

density in the interior of an
optically thick shock layer

n th-order coefficient in the
expansion of p

Stefan-Boltzmann constant, 5.669 x 10~2

area

mass scattering coefficient

transformed monochromatic optical
path length in viscous boundary
layer

thickness of the viscous boundary
leyer in terms of %

optical path length in a gray gas;
chapter II only

normalized optical path length in
a gray gas

normalized optical path length in

& gray gas; chapter II only

287

none

g fon?
4

erg/&m?-sec-ox

2
cn

e
none
none
none
none

none



monochromatic optical path length;
chapter II only

normalized monochromatic optical
path length

normalized monochromstic optical
path length ; chapter II oniy

monochromatic optical path length
in the s-direction

thickness of the viscous boundery
layer in terms of 'r)\

shock location in terms of T

n th-order coefficient in the pertur-
bation expansion of TA

shock location in terms of LY

component of the viscous stress
tensor

functions of 1 defined by
equations (B.92) and (B.9b)

constants defined ﬁy equations
(B.10a) and (B.10b)

density ratio across the normsl
shock, X = pm/ps

constants defined by equations

(B.12a) and (B.12b)

none
none
none
none

none

none

none

none

dyne/cm2
none
none
none

none
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w solid angle | none
w constant defined by equation (5.22) none
w, constant defined by equation (5.30) none
Subscripts

s indicates value of dimensional gquantity

at normal shock equilibrium conditions
® indicates value of dimensional quantity

in the free stream



